| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > triun | Structured version Visualization version Unicode version | ||
| Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| triun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4524 |
. . . 4
| |
| 2 | r19.29 3072 |
. . . . 5
| |
| 3 | nfcv 2764 |
. . . . . . 7
| |
| 4 | nfiu1 4550 |
. . . . . . 7
| |
| 5 | 3, 4 | nfss 3596 |
. . . . . 6
|
| 6 | trss 4761 |
. . . . . . . 8
| |
| 7 | 6 | imp 445 |
. . . . . . 7
|
| 8 | ssiun2 4563 |
. . . . . . 7
| |
| 9 | sstr2 3610 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | syl2imc 41 |
. . . . . 6
|
| 11 | 5, 10 | rexlimi 3024 |
. . . . 5
|
| 12 | 2, 11 | syl 17 |
. . . 4
|
| 13 | 1, 12 | sylan2b 492 |
. . 3
|
| 14 | 13 | ralrimiva 2966 |
. 2
|
| 15 | dftr3 4756 |
. 2
| |
| 16 | 14, 15 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-iun 4522 df-tr 4753 |
| This theorem is referenced by: truni 4767 r1tr 8639 r1elssi 8668 iunord 42422 |
| Copyright terms: Public domain | W3C validator |