MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tr Structured version   Visualization version   Unicode version

Theorem r1tr 8639
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1tr  |-  Tr  ( R1 `  A )

Proof of Theorem r1tr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8629 . . . . . 6  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 478 . . . . 5  |-  Lim  dom  R1
3 limord 5784 . . . . 5  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
4 ordsson 6989 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
52, 3, 4mp2b 10 . . . 4  |-  dom  R1  C_  On
65sseli 3599 . . 3  |-  ( A  e.  dom  R1  ->  A  e.  On )
7 fveq2 6191 . . . . . 6  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
8 r10 8631 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
97, 8syl6eq 2672 . . . . 5  |-  ( x  =  (/)  ->  ( R1
`  x )  =  (/) )
10 treq 4758 . . . . 5  |-  ( ( R1 `  x )  =  (/)  ->  ( Tr  ( R1 `  x
)  <->  Tr  (/) ) )
119, 10syl 17 . . . 4  |-  ( x  =  (/)  ->  ( Tr  ( R1 `  x
)  <->  Tr  (/) ) )
12 fveq2 6191 . . . . 5  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
13 treq 4758 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  y ) ) )
1412, 13syl 17 . . . 4  |-  ( x  =  y  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  y ) ) )
15 fveq2 6191 . . . . 5  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
16 treq 4758 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  suc  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 ` 
suc  y ) ) )
1715, 16syl 17 . . . 4  |-  ( x  =  suc  y  -> 
( Tr  ( R1
`  x )  <->  Tr  ( R1 `  suc  y ) ) )
18 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( R1 `  x )  =  ( R1 `  A
) )
19 treq 4758 . . . . 5  |-  ( ( R1 `  x )  =  ( R1 `  A )  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  A ) ) )
2018, 19syl 17 . . . 4  |-  ( x  =  A  ->  ( Tr  ( R1 `  x
)  <->  Tr  ( R1 `  A ) ) )
21 tr0 4764 . . . 4  |-  Tr  (/)
22 limsuc 7049 . . . . . . . 8  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
232, 22ax-mp 5 . . . . . . 7  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
24 simpr 477 . . . . . . . . 9  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ( R1 `  y ) )
25 pwtr 4921 . . . . . . . . 9  |-  ( Tr  ( R1 `  y
)  <->  Tr  ~P ( R1 `  y ) )
2624, 25sylib 208 . . . . . . . 8  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ~P ( R1 `  y
) )
27 r1sucg 8632 . . . . . . . . 9  |-  ( y  e.  dom  R1  ->  ( R1 `  suc  y
)  =  ~P ( R1 `  y ) )
28 treq 4758 . . . . . . . . 9  |-  ( ( R1 `  suc  y
)  =  ~P ( R1 `  y )  -> 
( Tr  ( R1
`  suc  y )  <->  Tr 
~P ( R1 `  y ) ) )
2927, 28syl 17 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( Tr  ( R1 `  suc  y )  <->  Tr  ~P ( R1 `  y ) ) )
3026, 29syl5ibrcom 237 . . . . . . 7  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  (
y  e.  dom  R1  ->  Tr  ( R1 `  suc  y ) ) )
3123, 30syl5bir 233 . . . . . 6  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  ( suc  y  e.  dom  R1 
->  Tr  ( R1 `  suc  y ) ) )
32 ndmfv 6218 . . . . . . . 8  |-  ( -. 
suc  y  e.  dom  R1 
->  ( R1 `  suc  y )  =  (/) )
33 treq 4758 . . . . . . . 8  |-  ( ( R1 `  suc  y
)  =  (/)  ->  ( Tr  ( R1 `  suc  y )  <->  Tr  (/) ) )
3432, 33syl 17 . . . . . . 7  |-  ( -. 
suc  y  e.  dom  R1 
->  ( Tr  ( R1
`  suc  y )  <->  Tr  (/) ) )
3521, 34mpbiri 248 . . . . . 6  |-  ( -. 
suc  y  e.  dom  R1 
->  Tr  ( R1 `  suc  y ) )
3631, 35pm2.61d1 171 . . . . 5  |-  ( ( y  e.  On  /\  Tr  ( R1 `  y
) )  ->  Tr  ( R1 `  suc  y
) )
3736ex 450 . . . 4  |-  ( y  e.  On  ->  ( Tr  ( R1 `  y
)  ->  Tr  ( R1 `  suc  y ) ) )
38 triun 4766 . . . . . . . 8  |-  ( A. y  e.  x  Tr  ( R1 `  y )  ->  Tr  U_ y  e.  x  ( R1 `  y ) )
39 r1limg 8634 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
Lim  x )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
4039ancoms 469 . . . . . . . . 9  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
41 treq 4758 . . . . . . . . 9  |-  ( ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y )  ->  ( Tr  ( R1 `  x
)  <->  Tr  U_ y  e.  x  ( R1 `  y ) ) )
4240, 41syl 17 . . . . . . . 8  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( Tr  ( R1
`  x )  <->  Tr  U_ y  e.  x  ( R1 `  y ) ) )
4338, 42syl5ibr 236 . . . . . . 7  |-  ( ( Lim  x  /\  x  e.  dom  R1 )  -> 
( A. y  e.  x  Tr  ( R1
`  y )  ->  Tr  ( R1 `  x
) ) )
4443impancom 456 . . . . . 6  |-  ( ( Lim  x  /\  A. y  e.  x  Tr  ( R1 `  y ) )  ->  ( x  e.  dom  R1  ->  Tr  ( R1 `  x ) ) )
45 ndmfv 6218 . . . . . . . 8  |-  ( -.  x  e.  dom  R1  ->  ( R1 `  x
)  =  (/) )
4645, 10syl 17 . . . . . . 7  |-  ( -.  x  e.  dom  R1  ->  ( Tr  ( R1
`  x )  <->  Tr  (/) ) )
4721, 46mpbiri 248 . . . . . 6  |-  ( -.  x  e.  dom  R1  ->  Tr  ( R1 `  x ) )
4844, 47pm2.61d1 171 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  Tr  ( R1 `  y ) )  ->  Tr  ( R1 `  x ) )
4948ex 450 . . . 4  |-  ( Lim  x  ->  ( A. y  e.  x  Tr  ( R1 `  y )  ->  Tr  ( R1 `  x ) ) )
5011, 14, 17, 20, 21, 37, 49tfinds 7059 . . 3  |-  ( A  e.  On  ->  Tr  ( R1 `  A ) )
516, 50syl 17 . 2  |-  ( A  e.  dom  R1  ->  Tr  ( R1 `  A
) )
52 ndmfv 6218 . . . 4  |-  ( -.  A  e.  dom  R1  ->  ( R1 `  A
)  =  (/) )
53 treq 4758 . . . 4  |-  ( ( R1 `  A )  =  (/)  ->  ( Tr  ( R1 `  A
)  <->  Tr  (/) ) )
5452, 53syl 17 . . 3  |-  ( -.  A  e.  dom  R1  ->  ( Tr  ( R1
`  A )  <->  Tr  (/) ) )
5521, 54mpbiri 248 . 2  |-  ( -.  A  e.  dom  R1  ->  Tr  ( R1 `  A ) )
5651, 55pm2.61i 176 1  |-  Tr  ( R1 `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U_ciun 4520   Tr wtr 4752   dom cdm 5114   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   Fun wfun 5882   ` cfv 5888   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  r1tr2  8640  r1ordg  8641  r1ord3g  8642  r1ord2  8644  r1sssuc  8646  r1pwss  8647  r1val1  8649  rankwflemb  8656  r1elwf  8659  r1elssi  8668  uniwf  8682  tcrank  8747  ackbij2lem3  9063  r1limwun  9558  tskr1om2  9590
  Copyright terms: Public domain W3C validator