| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1tr | Structured version Visualization version Unicode version | ||
| Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1tr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 8629 |
. . . . . 6
| |
| 2 | 1 | simpri 478 |
. . . . 5
|
| 3 | limord 5784 |
. . . . 5
| |
| 4 | ordsson 6989 |
. . . . 5
| |
| 5 | 2, 3, 4 | mp2b 10 |
. . . 4
|
| 6 | 5 | sseli 3599 |
. . 3
|
| 7 | fveq2 6191 |
. . . . . 6
| |
| 8 | r10 8631 |
. . . . . 6
| |
| 9 | 7, 8 | syl6eq 2672 |
. . . . 5
|
| 10 | treq 4758 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | fveq2 6191 |
. . . . 5
| |
| 13 | treq 4758 |
. . . . 5
| |
| 14 | 12, 13 | syl 17 |
. . . 4
|
| 15 | fveq2 6191 |
. . . . 5
| |
| 16 | treq 4758 |
. . . . 5
| |
| 17 | 15, 16 | syl 17 |
. . . 4
|
| 18 | fveq2 6191 |
. . . . 5
| |
| 19 | treq 4758 |
. . . . 5
| |
| 20 | 18, 19 | syl 17 |
. . . 4
|
| 21 | tr0 4764 |
. . . 4
| |
| 22 | limsuc 7049 |
. . . . . . . 8
| |
| 23 | 2, 22 | ax-mp 5 |
. . . . . . 7
|
| 24 | simpr 477 |
. . . . . . . . 9
| |
| 25 | pwtr 4921 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sylib 208 |
. . . . . . . 8
|
| 27 | r1sucg 8632 |
. . . . . . . . 9
| |
| 28 | treq 4758 |
. . . . . . . . 9
| |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
|
| 30 | 26, 29 | syl5ibrcom 237 |
. . . . . . 7
|
| 31 | 23, 30 | syl5bir 233 |
. . . . . 6
|
| 32 | ndmfv 6218 |
. . . . . . . 8
| |
| 33 | treq 4758 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
|
| 35 | 21, 34 | mpbiri 248 |
. . . . . 6
|
| 36 | 31, 35 | pm2.61d1 171 |
. . . . 5
|
| 37 | 36 | ex 450 |
. . . 4
|
| 38 | triun 4766 |
. . . . . . . 8
| |
| 39 | r1limg 8634 |
. . . . . . . . . 10
| |
| 40 | 39 | ancoms 469 |
. . . . . . . . 9
|
| 41 | treq 4758 |
. . . . . . . . 9
| |
| 42 | 40, 41 | syl 17 |
. . . . . . . 8
|
| 43 | 38, 42 | syl5ibr 236 |
. . . . . . 7
|
| 44 | 43 | impancom 456 |
. . . . . 6
|
| 45 | ndmfv 6218 |
. . . . . . . 8
| |
| 46 | 45, 10 | syl 17 |
. . . . . . 7
|
| 47 | 21, 46 | mpbiri 248 |
. . . . . 6
|
| 48 | 44, 47 | pm2.61d1 171 |
. . . . 5
|
| 49 | 48 | ex 450 |
. . . 4
|
| 50 | 11, 14, 17, 20, 21, 37, 49 | tfinds 7059 |
. . 3
|
| 51 | 6, 50 | syl 17 |
. 2
|
| 52 | ndmfv 6218 |
. . . 4
| |
| 53 | treq 4758 |
. . . 4
| |
| 54 | 52, 53 | syl 17 |
. . 3
|
| 55 | 21, 54 | mpbiri 248 |
. 2
|
| 56 | 51, 55 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-r1 8627 |
| This theorem is referenced by: r1tr2 8640 r1ordg 8641 r1ord3g 8642 r1ord2 8644 r1sssuc 8646 r1pwss 8647 r1val1 8649 rankwflemb 8656 r1elwf 8659 r1elssi 8668 uniwf 8682 tcrank 8747 ackbij2lem3 9063 r1limwun 9558 tskr1om2 9590 |
| Copyright terms: Public domain | W3C validator |