Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlfset Structured version   Visualization version   Unicode version

Theorem trlfset 35447
Description: The set of all traces of lattice translations for a lattice 
K. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b  |-  B  =  ( Base `  K
)
trlset.l  |-  .<_  =  ( le `  K )
trlset.j  |-  .\/  =  ( join `  K )
trlset.m  |-  ./\  =  ( meet `  K )
trlset.a  |-  A  =  ( Atoms `  K )
trlset.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
trlfset  |-  ( K  e.  C  ->  ( trL `  K )  =  ( w  e.  H  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) ) ) )
Distinct variable groups:    A, p    x, B    w, H    f, p, w, x, K
Allowed substitution hints:    A( x, w, f)    B( w, f, p)    C( x, w, f, p)    H( x, f, p)    .\/ ( x, w, f, p)    .<_ ( x, w, f, p)    ./\ ( x, w, f, p)

Proof of Theorem trlfset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  C  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 trlset.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
65fveq1d 6193 . . . . 5  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
7 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
8 trlset.b . . . . . . 7  |-  B  =  ( Base `  K
)
97, 8syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  B )
10 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
11 trlset.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
1210, 11syl6eqr 2674 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
13 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
14 trlset.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
1513, 14syl6eqr 2674 . . . . . . . . . 10  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1615breqd 4664 . . . . . . . . 9  |-  ( k  =  K  ->  (
p ( le `  k ) w  <->  p  .<_  w ) )
1716notbid 308 . . . . . . . 8  |-  ( k  =  K  ->  ( -.  p ( le `  k ) w  <->  -.  p  .<_  w ) )
18 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
19 trlset.m . . . . . . . . . . 11  |-  ./\  =  ( meet `  K )
2018, 19syl6eqr 2674 . . . . . . . . . 10  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
21 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
22 trlset.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
2321, 22syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
2423oveqd 6667 . . . . . . . . . 10  |-  ( k  =  K  ->  (
p ( join `  k
) ( f `  p ) )  =  ( p  .\/  (
f `  p )
) )
25 eqidd 2623 . . . . . . . . . 10  |-  ( k  =  K  ->  w  =  w )
2620, 24, 25oveq123d 6671 . . . . . . . . 9  |-  ( k  =  K  ->  (
( p ( join `  k ) ( f `
 p ) ) ( meet `  k
) w )  =  ( ( p  .\/  ( f `  p
) )  ./\  w
) )
2726eqeq2d 2632 . . . . . . . 8  |-  ( k  =  K  ->  (
x  =  ( ( p ( join `  k
) ( f `  p ) ) (
meet `  k )
w )  <->  x  =  ( ( p  .\/  ( f `  p
) )  ./\  w
) ) )
2817, 27imbi12d 334 . . . . . . 7  |-  ( k  =  K  ->  (
( -.  p ( le `  k ) w  ->  x  =  ( ( p (
join `  k )
( f `  p
) ) ( meet `  k ) w ) )  <->  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  ( f `  p
) )  ./\  w
) ) ) )
2912, 28raleqbidv 3152 . . . . . 6  |-  ( k  =  K  ->  ( A. p  e.  ( Atoms `  k ) ( -.  p ( le
`  k ) w  ->  x  =  ( ( p ( join `  k ) ( f `
 p ) ) ( meet `  k
) w ) )  <->  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) )
309, 29riotaeqbidv 6614 . . . . 5  |-  ( k  =  K  ->  ( iota_ x  e.  ( Base `  k ) A. p  e.  ( Atoms `  k )
( -.  p ( le `  k ) w  ->  x  =  ( ( p (
join `  k )
( f `  p
) ) ( meet `  k ) w ) ) )  =  (
iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) )
316, 30mpteq12dv 4733 . . . 4  |-  ( k  =  K  ->  (
f  e.  ( (
LTrn `  k ) `  w )  |->  ( iota_ x  e.  ( Base `  k
) A. p  e.  ( Atoms `  k )
( -.  p ( le `  k ) w  ->  x  =  ( ( p (
join `  k )
( f `  p
) ) ( meet `  k ) w ) ) ) )  =  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) ) )
324, 31mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( f  e.  ( ( LTrn `  k ) `  w
)  |->  ( iota_ x  e.  ( Base `  k
) A. p  e.  ( Atoms `  k )
( -.  p ( le `  k ) w  ->  x  =  ( ( p (
join `  k )
( f `  p
) ) ( meet `  k ) w ) ) ) ) )  =  ( w  e.  H  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) ) ) )
33 df-trl 35446 . . 3  |-  trL  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( f  e.  ( (
LTrn `  k ) `  w )  |->  ( iota_ x  e.  ( Base `  k
) A. p  e.  ( Atoms `  k )
( -.  p ( le `  k ) w  ->  x  =  ( ( p (
join `  k )
( f `  p
) ) ( meet `  k ) w ) ) ) ) ) )
34 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
353, 34eqeltri 2697 . . . 4  |-  H  e. 
_V
3635mptex 6486 . . 3  |-  ( w  e.  H  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  ( f `  p
) )  ./\  w
) ) ) ) )  e.  _V
3732, 33, 36fvmpt 6282 . 2  |-  ( K  e.  _V  ->  ( trL `  K )  =  ( w  e.  H  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) ) ) )
381, 37syl 17 1  |-  ( K  e.  C  ->  ( trL `  K )  =  ( w  e.  H  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( iota_ x  e.  B  A. p  e.  A  ( -.  p  .<_  w  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  w )
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trl 35446
This theorem is referenced by:  trlset  35448
  Copyright terms: Public domain W3C validator