Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trnfsetN Structured version   Visualization version   Unicode version

Theorem trnfsetN 35442
Description: The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
trnset.a  |-  A  =  ( Atoms `  K )
trnset.s  |-  S  =  ( PSubSp `  K )
trnset.p  |-  .+  =  ( +P `  K
)
trnset.o  |-  ._|_  =  ( _|_P `  K
)
trnset.w  |-  W  =  ( WAtoms `  K )
trnset.m  |-  M  =  ( PAut `  K
)
trnset.l  |-  L  =  ( Dil `  K
)
trnset.t  |-  T  =  ( Trn `  K
)
Assertion
Ref Expression
trnfsetN  |-  ( K  e.  C  ->  T  =  ( d  e.  A  |->  { f  e.  ( L `  d
)  |  A. q  e.  ( W `  d
) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) } ) )
Distinct variable groups:    A, d    f, d, q, r, K   
f, L    W, q,
r
Allowed substitution hints:    A( f, r, q)    C( f, r, q, d)    .+ ( f, r, q, d)    S( f, r, q, d)    T( f, r, q, d)    L( r, q, d)    M( f, r, q, d)    ._|_ ( f, r, q, d)    W( f, d)

Proof of Theorem trnfsetN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  C  ->  K  e.  _V )
2 trnset.t . . 3  |-  T  =  ( Trn `  K
)
3 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 trnset.a . . . . . 6  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2674 . . . . 5  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
6 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( Dil `  k )  =  ( Dil `  K
) )
7 trnset.l . . . . . . . 8  |-  L  =  ( Dil `  K
)
86, 7syl6eqr 2674 . . . . . . 7  |-  ( k  =  K  ->  ( Dil `  k )  =  L )
98fveq1d 6193 . . . . . 6  |-  ( k  =  K  ->  (
( Dil `  k
) `  d )  =  ( L `  d ) )
10 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( WAtoms `
 k )  =  ( WAtoms `  K )
)
11 trnset.w . . . . . . . . 9  |-  W  =  ( WAtoms `  K )
1210, 11syl6eqr 2674 . . . . . . . 8  |-  ( k  =  K  ->  ( WAtoms `
 k )  =  W )
1312fveq1d 6193 . . . . . . 7  |-  ( k  =  K  ->  (
( WAtoms `  k ) `  d )  =  ( W `  d ) )
14 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( +P `  k )  =  ( +P `  K ) )
15 trnset.p . . . . . . . . . . . 12  |-  .+  =  ( +P `  K
)
1614, 15syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( +P `  k )  =  .+  )
1716oveqd 6667 . . . . . . . . . 10  |-  ( k  =  K  ->  (
q ( +P `  k ) ( f `
 q ) )  =  ( q  .+  ( f `  q
) ) )
18 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( _|_P `  k )  =  ( _|_P `  K ) )
19 trnset.o . . . . . . . . . . . 12  |-  ._|_  =  ( _|_P `  K
)
2018, 19syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( _|_P `  k )  =  ._|_  )
2120fveq1d 6193 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( _|_P `  k ) `  {
d } )  =  (  ._|_  `  { d } ) )
2217, 21ineq12d 3815 . . . . . . . . 9  |-  ( k  =  K  ->  (
( q ( +P `  k ) ( f `  q
) )  i^i  (
( _|_P `  k ) `  {
d } ) )  =  ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) ) )
2316oveqd 6667 . . . . . . . . . 10  |-  ( k  =  K  ->  (
r ( +P `  k ) ( f `
 r ) )  =  ( r  .+  ( f `  r
) ) )
2423, 21ineq12d 3815 . . . . . . . . 9  |-  ( k  =  K  ->  (
( r ( +P `  k ) ( f `  r
) )  i^i  (
( _|_P `  k ) `  {
d } ) )  =  ( ( r 
.+  ( f `  r ) )  i^i  (  ._|_  `  { d } ) ) )
2522, 24eqeq12d 2637 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( q ( +P `  k
) ( f `  q ) )  i^i  ( ( _|_P `  k ) `  {
d } ) )  =  ( ( r ( +P `  k ) ( f `
 r ) )  i^i  ( ( _|_P `  k ) `
 { d } ) )  <->  ( (
q  .+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) ) )
2613, 25raleqbidv 3152 . . . . . . 7  |-  ( k  =  K  ->  ( A. r  e.  (
( WAtoms `  k ) `  d ) ( ( q ( +P `  k ) ( f `
 q ) )  i^i  ( ( _|_P `  k ) `
 { d } ) )  =  ( ( r ( +P `  k ) ( f `  r
) )  i^i  (
( _|_P `  k ) `  {
d } ) )  <->  A. r  e.  ( W `  d )
( ( q  .+  ( f `  q
) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  (
f `  r )
)  i^i  (  ._|_  `  { d } ) ) ) )
2713, 26raleqbidv 3152 . . . . . 6  |-  ( k  =  K  ->  ( A. q  e.  (
( WAtoms `  k ) `  d ) A. r  e.  ( ( WAtoms `  k
) `  d )
( ( q ( +P `  k
) ( f `  q ) )  i^i  ( ( _|_P `  k ) `  {
d } ) )  =  ( ( r ( +P `  k ) ( f `
 r ) )  i^i  ( ( _|_P `  k ) `
 { d } ) )  <->  A. q  e.  ( W `  d
) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) ) )
289, 27rabeqbidv 3195 . . . . 5  |-  ( k  =  K  ->  { f  e.  ( ( Dil `  k ) `  d
)  |  A. q  e.  ( ( WAtoms `  k
) `  d ) A. r  e.  (
( WAtoms `  k ) `  d ) ( ( q ( +P `  k ) ( f `
 q ) )  i^i  ( ( _|_P `  k ) `
 { d } ) )  =  ( ( r ( +P `  k ) ( f `  r
) )  i^i  (
( _|_P `  k ) `  {
d } ) ) }  =  { f  e.  ( L `  d )  |  A. q  e.  ( W `  d ) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) } )
295, 28mpteq12dv 4733 . . . 4  |-  ( k  =  K  ->  (
d  e.  ( Atoms `  k )  |->  { f  e.  ( ( Dil `  k ) `  d
)  |  A. q  e.  ( ( WAtoms `  k
) `  d ) A. r  e.  (
( WAtoms `  k ) `  d ) ( ( q ( +P `  k ) ( f `
 q ) )  i^i  ( ( _|_P `  k ) `
 { d } ) )  =  ( ( r ( +P `  k ) ( f `  r
) )  i^i  (
( _|_P `  k ) `  {
d } ) ) } )  =  ( d  e.  A  |->  { f  e.  ( L `
 d )  | 
A. q  e.  ( W `  d ) A. r  e.  ( W `  d ) ( ( q  .+  ( f `  q
) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  (
f `  r )
)  i^i  (  ._|_  `  { d } ) ) } ) )
30 df-trnN 35393 . . . 4  |-  Trn  =  ( k  e.  _V  |->  ( d  e.  (
Atoms `  k )  |->  { f  e.  ( ( Dil `  k ) `
 d )  | 
A. q  e.  ( ( WAtoms `  k ) `  d ) A. r  e.  ( ( WAtoms `  k
) `  d )
( ( q ( +P `  k
) ( f `  q ) )  i^i  ( ( _|_P `  k ) `  {
d } ) )  =  ( ( r ( +P `  k ) ( f `
 r ) )  i^i  ( ( _|_P `  k ) `
 { d } ) ) } ) )
31 fvex 6201 . . . . . 6  |-  ( Atoms `  K )  e.  _V
324, 31eqeltri 2697 . . . . 5  |-  A  e. 
_V
3332mptex 6486 . . . 4  |-  ( d  e.  A  |->  { f  e.  ( L `  d )  |  A. q  e.  ( W `  d ) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) } )  e.  _V
3429, 30, 33fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  ( Trn `  K )  =  ( d  e.  A  |->  { f  e.  ( L `  d )  |  A. q  e.  ( W `  d
) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) } ) )
352, 34syl5eq 2668 . 2  |-  ( K  e.  _V  ->  T  =  ( d  e.  A  |->  { f  e.  ( L `  d
)  |  A. q  e.  ( W `  d
) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) } ) )
361, 35syl 17 1  |-  ( K  e.  C  ->  T  =  ( d  e.  A  |->  { f  e.  ( L `  d
)  |  A. q  e.  ( W `  d
) A. r  e.  ( W `  d
) ( ( q 
.+  ( f `  q ) )  i^i  (  ._|_  `  { d } ) )  =  ( ( r  .+  ( f `  r
) )  i^i  (  ._|_  `  { d } ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    i^i cin 3573   {csn 4177    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Atomscatm 34550   PSubSpcpsubsp 34782   +Pcpadd 35081   _|_PcpolN 35188   WAtomscwpointsN 35272   PAutcpautN 35273   DilcdilN 35388   TrnctrnN 35389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-trnN 35393
This theorem is referenced by:  trnsetN  35443
  Copyright terms: Public domain W3C validator