MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqdifeqOLD Structured version   Visualization version   Unicode version

Theorem uneqdifeqOLD 4058
Description: Obsolete proof of uneqdifeq 4057 as of 14-Jul-2021. (Contributed by FL, 17-Nov-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
uneqdifeqOLD  |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  u.  B
)  =  C  <->  ( C  \  A )  =  B ) )

Proof of Theorem uneqdifeqOLD
StepHypRef Expression
1 uncom 3757 . . . . 5  |-  ( B  u.  A )  =  ( A  u.  B
)
2 eqtr 2641 . . . . . . 7  |-  ( ( ( B  u.  A
)  =  ( A  u.  B )  /\  ( A  u.  B
)  =  C )  ->  ( B  u.  A )  =  C )
32eqcomd 2628 . . . . . 6  |-  ( ( ( B  u.  A
)  =  ( A  u.  B )  /\  ( A  u.  B
)  =  C )  ->  C  =  ( B  u.  A ) )
4 difeq1 3721 . . . . . . 7  |-  ( C  =  ( B  u.  A )  ->  ( C  \  A )  =  ( ( B  u.  A )  \  A
) )
5 difun2 4048 . . . . . . 7  |-  ( ( B  u.  A ) 
\  A )  =  ( B  \  A
)
6 eqtr 2641 . . . . . . . 8  |-  ( ( ( C  \  A
)  =  ( ( B  u.  A ) 
\  A )  /\  ( ( B  u.  A )  \  A
)  =  ( B 
\  A ) )  ->  ( C  \  A )  =  ( B  \  A ) )
7 incom 3805 . . . . . . . . . . 11  |-  ( A  i^i  B )  =  ( B  i^i  A
)
87eqeq1i 2627 . . . . . . . . . 10  |-  ( ( A  i^i  B )  =  (/)  <->  ( B  i^i  A )  =  (/) )
9 disj3 4021 . . . . . . . . . 10  |-  ( ( B  i^i  A )  =  (/)  <->  B  =  ( B  \  A ) )
108, 9bitri 264 . . . . . . . . 9  |-  ( ( A  i^i  B )  =  (/)  <->  B  =  ( B  \  A ) )
11 eqtr 2641 . . . . . . . . . . 11  |-  ( ( ( C  \  A
)  =  ( B 
\  A )  /\  ( B  \  A )  =  B )  -> 
( C  \  A
)  =  B )
1211expcom 451 . . . . . . . . . 10  |-  ( ( B  \  A )  =  B  ->  (
( C  \  A
)  =  ( B 
\  A )  -> 
( C  \  A
)  =  B ) )
1312eqcoms 2630 . . . . . . . . 9  |-  ( B  =  ( B  \  A )  ->  (
( C  \  A
)  =  ( B 
\  A )  -> 
( C  \  A
)  =  B ) )
1410, 13sylbi 207 . . . . . . . 8  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( C  \  A )  =  ( B  \  A )  ->  ( C  \  A )  =  B ) )
156, 14syl5com 31 . . . . . . 7  |-  ( ( ( C  \  A
)  =  ( ( B  u.  A ) 
\  A )  /\  ( ( B  u.  A )  \  A
)  =  ( B 
\  A ) )  ->  ( ( A  i^i  B )  =  (/)  ->  ( C  \  A )  =  B ) )
164, 5, 15sylancl 694 . . . . . 6  |-  ( C  =  ( B  u.  A )  ->  (
( A  i^i  B
)  =  (/)  ->  ( C  \  A )  =  B ) )
173, 16syl 17 . . . . 5  |-  ( ( ( B  u.  A
)  =  ( A  u.  B )  /\  ( A  u.  B
)  =  C )  ->  ( ( A  i^i  B )  =  (/)  ->  ( C  \  A )  =  B ) )
181, 17mpan 706 . . . 4  |-  ( ( A  u.  B )  =  C  ->  (
( A  i^i  B
)  =  (/)  ->  ( C  \  A )  =  B ) )
1918com12 32 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  u.  B )  =  C  ->  ( C  \  A )  =  B ) )
2019adantl 482 . 2  |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  u.  B
)  =  C  -> 
( C  \  A
)  =  B ) )
21 difss 3737 . . . . . . . 8  |-  ( C 
\  A )  C_  C
22 sseq1 3626 . . . . . . . . 9  |-  ( ( C  \  A )  =  B  ->  (
( C  \  A
)  C_  C  <->  B  C_  C
) )
23 unss 3787 . . . . . . . . . . 11  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
2423biimpi 206 . . . . . . . . . 10  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  u.  B
)  C_  C )
2524expcom 451 . . . . . . . . 9  |-  ( B 
C_  C  ->  ( A  C_  C  ->  ( A  u.  B )  C_  C ) )
2622, 25syl6bi 243 . . . . . . . 8  |-  ( ( C  \  A )  =  B  ->  (
( C  \  A
)  C_  C  ->  ( A  C_  C  ->  ( A  u.  B ) 
C_  C ) ) )
2721, 26mpi 20 . . . . . . 7  |-  ( ( C  \  A )  =  B  ->  ( A  C_  C  ->  ( A  u.  B )  C_  C ) )
2827com12 32 . . . . . 6  |-  ( A 
C_  C  ->  (
( C  \  A
)  =  B  -> 
( A  u.  B
)  C_  C )
)
2928adantr 481 . . . . 5  |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  (
( C  \  A
)  =  B  -> 
( A  u.  B
)  C_  C )
)
3029imp 445 . . . 4  |-  ( ( ( A  C_  C  /\  ( A  i^i  B
)  =  (/) )  /\  ( C  \  A )  =  B )  -> 
( A  u.  B
)  C_  C )
31 eqimss 3657 . . . . . . 7  |-  ( ( C  \  A )  =  B  ->  ( C  \  A )  C_  B )
3231adantl 482 . . . . . 6  |-  ( ( A  C_  C  /\  ( C  \  A )  =  B )  -> 
( C  \  A
)  C_  B )
33 ssundif 4052 . . . . . 6  |-  ( C 
C_  ( A  u.  B )  <->  ( C  \  A )  C_  B
)
3432, 33sylibr 224 . . . . 5  |-  ( ( A  C_  C  /\  ( C  \  A )  =  B )  ->  C  C_  ( A  u.  B ) )
3534adantlr 751 . . . 4  |-  ( ( ( A  C_  C  /\  ( A  i^i  B
)  =  (/) )  /\  ( C  \  A )  =  B )  ->  C  C_  ( A  u.  B ) )
3630, 35eqssd 3620 . . 3  |-  ( ( ( A  C_  C  /\  ( A  i^i  B
)  =  (/) )  /\  ( C  \  A )  =  B )  -> 
( A  u.  B
)  =  C )
3736ex 450 . 2  |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  (
( C  \  A
)  =  B  -> 
( A  u.  B
)  =  C ) )
3820, 37impbid 202 1  |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  u.  B
)  =  C  <->  ( C  \  A )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator