| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneqdifeqOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of uneqdifeq 4057 as of 14-Jul-2021. (Contributed by FL, 17-Nov-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| uneqdifeqOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3757 |
. . . . 5
| |
| 2 | eqtr 2641 |
. . . . . . 7
| |
| 3 | 2 | eqcomd 2628 |
. . . . . 6
|
| 4 | difeq1 3721 |
. . . . . . 7
| |
| 5 | difun2 4048 |
. . . . . . 7
| |
| 6 | eqtr 2641 |
. . . . . . . 8
| |
| 7 | incom 3805 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq1i 2627 |
. . . . . . . . . 10
|
| 9 | disj3 4021 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | bitri 264 |
. . . . . . . . 9
|
| 11 | eqtr 2641 |
. . . . . . . . . . 11
| |
| 12 | 11 | expcom 451 |
. . . . . . . . . 10
|
| 13 | 12 | eqcoms 2630 |
. . . . . . . . 9
|
| 14 | 10, 13 | sylbi 207 |
. . . . . . . 8
|
| 15 | 6, 14 | syl5com 31 |
. . . . . . 7
|
| 16 | 4, 5, 15 | sylancl 694 |
. . . . . 6
|
| 17 | 3, 16 | syl 17 |
. . . . 5
|
| 18 | 1, 17 | mpan 706 |
. . . 4
|
| 19 | 18 | com12 32 |
. . 3
|
| 20 | 19 | adantl 482 |
. 2
|
| 21 | difss 3737 |
. . . . . . . 8
| |
| 22 | sseq1 3626 |
. . . . . . . . 9
| |
| 23 | unss 3787 |
. . . . . . . . . . 11
| |
| 24 | 23 | biimpi 206 |
. . . . . . . . . 10
|
| 25 | 24 | expcom 451 |
. . . . . . . . 9
|
| 26 | 22, 25 | syl6bi 243 |
. . . . . . . 8
|
| 27 | 21, 26 | mpi 20 |
. . . . . . 7
|
| 28 | 27 | com12 32 |
. . . . . 6
|
| 29 | 28 | adantr 481 |
. . . . 5
|
| 30 | 29 | imp 445 |
. . . 4
|
| 31 | eqimss 3657 |
. . . . . . 7
| |
| 32 | 31 | adantl 482 |
. . . . . 6
|
| 33 | ssundif 4052 |
. . . . . 6
| |
| 34 | 32, 33 | sylibr 224 |
. . . . 5
|
| 35 | 34 | adantlr 751 |
. . . 4
|
| 36 | 30, 35 | eqssd 3620 |
. . 3
|
| 37 | 36 | ex 450 |
. 2
|
| 38 | 20, 37 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |