| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniintsn | Structured version Visualization version Unicode version | ||
| Description: Two ways to express
" |
| Ref | Expression |
|---|---|
| uniintsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vn0 3924 |
. . . . . 6
| |
| 2 | inteq 4478 |
. . . . . . . . . . 11
| |
| 3 | int0 4490 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | syl6eq 2672 |
. . . . . . . . . 10
|
| 5 | 4 | adantl 482 |
. . . . . . . . 9
|
| 6 | unieq 4444 |
. . . . . . . . . . . 12
| |
| 7 | uni0 4465 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 9 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | syl5ib 234 |
. . . . . . . . . 10
|
| 11 | 10 | imp 445 |
. . . . . . . . 9
|
| 12 | 5, 11 | eqtr3d 2658 |
. . . . . . . 8
|
| 13 | 12 | ex 450 |
. . . . . . 7
|
| 14 | 13 | necon3d 2815 |
. . . . . 6
|
| 15 | 1, 14 | mpi 20 |
. . . . 5
|
| 16 | n0 3931 |
. . . . 5
| |
| 17 | 15, 16 | sylib 208 |
. . . 4
|
| 18 | vex 3203 |
. . . . . . 7
| |
| 19 | vex 3203 |
. . . . . . 7
| |
| 20 | 18, 19 | prss 4351 |
. . . . . 6
|
| 21 | uniss 4458 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | adantl 482 |
. . . . . . . . . . . 12
|
| 23 | simpl 473 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | sseqtrd 3641 |
. . . . . . . . . . 11
|
| 25 | intss 4498 |
. . . . . . . . . . . 12
| |
| 26 | 25 | adantl 482 |
. . . . . . . . . . 11
|
| 27 | 24, 26 | sstrd 3613 |
. . . . . . . . . 10
|
| 28 | 18, 19 | unipr 4449 |
. . . . . . . . . 10
|
| 29 | 18, 19 | intpr 4510 |
. . . . . . . . . 10
|
| 30 | 27, 28, 29 | 3sstr3g 3645 |
. . . . . . . . 9
|
| 31 | inss1 3833 |
. . . . . . . . . 10
| |
| 32 | ssun1 3776 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | sstri 3612 |
. . . . . . . . 9
|
| 34 | 30, 33 | jctir 561 |
. . . . . . . 8
|
| 35 | eqss 3618 |
. . . . . . . . 9
| |
| 36 | uneqin 3878 |
. . . . . . . . 9
| |
| 37 | 35, 36 | bitr3i 266 |
. . . . . . . 8
|
| 38 | 34, 37 | sylib 208 |
. . . . . . 7
|
| 39 | 38 | ex 450 |
. . . . . 6
|
| 40 | 20, 39 | syl5bi 232 |
. . . . 5
|
| 41 | 40 | alrimivv 1856 |
. . . 4
|
| 42 | 17, 41 | jca 554 |
. . 3
|
| 43 | euabsn 4261 |
. . . 4
| |
| 44 | eleq1 2689 |
. . . . 5
| |
| 45 | 44 | eu4 2518 |
. . . 4
|
| 46 | abid2 2745 |
. . . . . 6
| |
| 47 | 46 | eqeq1i 2627 |
. . . . 5
|
| 48 | 47 | exbii 1774 |
. . . 4
|
| 49 | 43, 45, 48 | 3bitr3i 290 |
. . 3
|
| 50 | 42, 49 | sylib 208 |
. 2
|
| 51 | 18 | unisn 4451 |
. . . 4
|
| 52 | unieq 4444 |
. . . 4
| |
| 53 | inteq 4478 |
. . . . 5
| |
| 54 | 18 | intsn 4513 |
. . . . 5
|
| 55 | 53, 54 | syl6eq 2672 |
. . . 4
|
| 56 | 51, 52, 55 | 3eqtr4a 2682 |
. . 3
|
| 57 | 56 | exlimiv 1858 |
. 2
|
| 58 | 50, 57 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-int 4476 |
| This theorem is referenced by: uniintab 4515 |
| Copyright terms: Public domain | W3C validator |