Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unima Structured version   Visualization version   Unicode version

Theorem unima 39346
Description: Image of a union. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
unima  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  ( F " ( B  u.  C ) )  =  ( ( F " B )  u.  ( F " C ) ) )

Proof of Theorem unima
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  F  Fn  A )
2 simpl 473 . . . . . . . 8  |-  ( ( B  C_  A  /\  C  C_  A )  ->  B  C_  A )
3 simpr 477 . . . . . . . 8  |-  ( ( B  C_  A  /\  C  C_  A )  ->  C  C_  A )
42, 3unssd 3789 . . . . . . 7  |-  ( ( B  C_  A  /\  C  C_  A )  -> 
( B  u.  C
)  C_  A )
543adant1 1079 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  ( B  u.  C )  C_  A )
6 fvelimab 6253 . . . . . 6  |-  ( ( F  Fn  A  /\  ( B  u.  C
)  C_  A )  ->  ( y  e.  ( F " ( B  u.  C ) )  <->  E. x  e.  ( B  u.  C )
( F `  x
)  =  y ) )
71, 5, 6syl2anc 693 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
y  e.  ( F
" ( B  u.  C ) )  <->  E. x  e.  ( B  u.  C
) ( F `  x )  =  y ) )
8 rexun 3793 . . . . 5  |-  ( E. x  e.  ( B  u.  C ) ( F `  x )  =  y  <->  ( E. x  e.  B  ( F `  x )  =  y  \/  E. x  e.  C  ( F `  x )  =  y ) )
97, 8syl6bb 276 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
y  e.  ( F
" ( B  u.  C ) )  <->  ( E. x  e.  B  ( F `  x )  =  y  \/  E. x  e.  C  ( F `  x )  =  y ) ) )
10 fvelimab 6253 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( y  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  y ) )
11103adant3 1081 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
y  e.  ( F
" B )  <->  E. x  e.  B  ( F `  x )  =  y ) )
12 fvelimab 6253 . . . . . 6  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( y  e.  ( F " C )  <->  E. x  e.  C  ( F `  x )  =  y ) )
13123adant2 1080 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
y  e.  ( F
" C )  <->  E. x  e.  C  ( F `  x )  =  y ) )
1411, 13orbi12d 746 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
( y  e.  ( F " B )  \/  y  e.  ( F " C ) )  <->  ( E. x  e.  B  ( F `  x )  =  y  \/  E. x  e.  C  ( F `  x )  =  y ) ) )
159, 14bitr4d 271 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
y  e.  ( F
" ( B  u.  C ) )  <->  ( y  e.  ( F " B
)  \/  y  e.  ( F " C
) ) ) )
16 elun 3753 . . 3  |-  ( y  e.  ( ( F
" B )  u.  ( F " C
) )  <->  ( y  e.  ( F " B
)  \/  y  e.  ( F " C
) ) )
1715, 16syl6bbr 278 . 2  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  (
y  e.  ( F
" ( B  u.  C ) )  <->  y  e.  ( ( F " B )  u.  ( F " C ) ) ) )
1817eqrdv 2620 1  |-  ( ( F  Fn  A  /\  B  C_  A  /\  C  C_  A )  ->  ( F " ( B  u.  C ) )  =  ( ( F " B )  u.  ( F " C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    u. cun 3572    C_ wss 3574   "cima 5117    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  icccncfext  40100
  Copyright terms: Public domain W3C validator