MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc Structured version   Visualization version   Unicode version

Theorem ordunisuc 7032
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordunisuc  |-  ( Ord 
A  ->  U. suc  A  =  A )

Proof of Theorem ordunisuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordeleqon 6988 . 2  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
2 suceq 5790 . . . . . 6  |-  ( x  =  A  ->  suc  x  =  suc  A )
32unieqd 4446 . . . . 5  |-  ( x  =  A  ->  U. suc  x  =  U. suc  A
)
4 id 22 . . . . 5  |-  ( x  =  A  ->  x  =  A )
53, 4eqeq12d 2637 . . . 4  |-  ( x  =  A  ->  ( U. suc  x  =  x  <->  U. suc  A  =  A ) )
6 eloni 5733 . . . . . 6  |-  ( x  e.  On  ->  Ord  x )
7 ordtr 5737 . . . . . 6  |-  ( Ord  x  ->  Tr  x
)
86, 7syl 17 . . . . 5  |-  ( x  e.  On  ->  Tr  x )
9 vex 3203 . . . . . 6  |-  x  e. 
_V
109unisuc 5801 . . . . 5  |-  ( Tr  x  <->  U. suc  x  =  x )
118, 10sylib 208 . . . 4  |-  ( x  e.  On  ->  U. suc  x  =  x )
125, 11vtoclga 3272 . . 3  |-  ( A  e.  On  ->  U. suc  A  =  A )
13 sucon 7008 . . . . . 6  |-  suc  On  =  On
1413unieqi 4445 . . . . 5  |-  U. suc  On  =  U. On
15 unon 7031 . . . . 5  |-  U. On  =  On
1614, 15eqtri 2644 . . . 4  |-  U. suc  On  =  On
17 suceq 5790 . . . . 5  |-  ( A  =  On  ->  suc  A  =  suc  On )
1817unieqd 4446 . . . 4  |-  ( A  =  On  ->  U. suc  A  =  U. suc  On )
19 id 22 . . . 4  |-  ( A  =  On  ->  A  =  On )
2016, 18, 193eqtr4a 2682 . . 3  |-  ( A  =  On  ->  U. suc  A  =  A )
2112, 20jaoi 394 . 2  |-  ( ( A  e.  On  \/  A  =  On )  ->  U. suc  A  =  A )
221, 21sylbi 207 1  |-  ( Ord 
A  ->  U. suc  A  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990   U.cuni 4436   Tr wtr 4752   Ord word 5722   Oncon0 5723   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  orduniss2  7033  onsucuni2  7034  nlimsucg  7042  tz7.44-2  7503  ttukeylem7  9337  tsksuc  9584  dfrdg2  31701  ontgsucval  32431  onsuctopon  32433  limsucncmpi  32444  finxpsuclem  33234
  Copyright terms: Public domain W3C validator