| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniuni | Structured version Visualization version Unicode version | ||
| Description: Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.) |
| Ref | Expression |
|---|---|
| uniuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4439 |
. . . . . 6
| |
| 2 | 1 | anbi2i 730 |
. . . . 5
|
| 3 | 2 | exbii 1774 |
. . . 4
|
| 4 | 19.42v 1918 |
. . . . . . 7
| |
| 5 | 4 | bicomi 214 |
. . . . . 6
|
| 6 | 5 | exbii 1774 |
. . . . 5
|
| 7 | excom 2042 |
. . . . . 6
| |
| 8 | anass 681 |
. . . . . . . 8
| |
| 9 | ancom 466 |
. . . . . . . 8
| |
| 10 | 8, 9 | bitr3i 266 |
. . . . . . 7
|
| 11 | 10 | 2exbii 1775 |
. . . . . 6
|
| 12 | exdistr 1919 |
. . . . . 6
| |
| 13 | 7, 11, 12 | 3bitri 286 |
. . . . 5
|
| 14 | eluni 4439 |
. . . . . . . 8
| |
| 15 | 14 | bicomi 214 |
. . . . . . 7
|
| 16 | 15 | anbi2i 730 |
. . . . . 6
|
| 17 | 16 | exbii 1774 |
. . . . 5
|
| 18 | 6, 13, 17 | 3bitri 286 |
. . . 4
|
| 19 | vuniex 6954 |
. . . . . . . . . 10
| |
| 20 | eleq2 2690 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | ceqsexv 3242 |
. . . . . . . . 9
|
| 22 | exancom 1787 |
. . . . . . . . 9
| |
| 23 | 21, 22 | bitr3i 266 |
. . . . . . . 8
|
| 24 | 23 | anbi2i 730 |
. . . . . . 7
|
| 25 | 19.42v 1918 |
. . . . . . 7
| |
| 26 | ancom 466 |
. . . . . . . . 9
| |
| 27 | anass 681 |
. . . . . . . . 9
| |
| 28 | 26, 27 | bitri 264 |
. . . . . . . 8
|
| 29 | 28 | exbii 1774 |
. . . . . . 7
|
| 30 | 24, 25, 29 | 3bitr2i 288 |
. . . . . 6
|
| 31 | 30 | exbii 1774 |
. . . . 5
|
| 32 | excom 2042 |
. . . . 5
| |
| 33 | exdistr 1919 |
. . . . . 6
| |
| 34 | vex 3203 |
. . . . . . . . . 10
| |
| 35 | eqeq1 2626 |
. . . . . . . . . . . 12
| |
| 36 | 35 | anbi1d 741 |
. . . . . . . . . . 11
|
| 37 | 36 | exbidv 1850 |
. . . . . . . . . 10
|
| 38 | 34, 37 | elab 3350 |
. . . . . . . . 9
|
| 39 | 38 | bicomi 214 |
. . . . . . . 8
|
| 40 | 39 | anbi2i 730 |
. . . . . . 7
|
| 41 | 40 | exbii 1774 |
. . . . . 6
|
| 42 | 33, 41 | bitri 264 |
. . . . 5
|
| 43 | 31, 32, 42 | 3bitri 286 |
. . . 4
|
| 44 | 3, 18, 43 | 3bitri 286 |
. . 3
|
| 45 | 44 | abbii 2739 |
. 2
|
| 46 | df-uni 4437 |
. 2
| |
| 47 | df-uni 4437 |
. 2
| |
| 48 | 45, 46, 47 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-uni 4437 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |