![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version Unicode version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
Ref | Expression |
---|---|
vuniex |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | uniex 6953 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-uni 4437 |
This theorem is referenced by: uniexg 6955 uniuni 6971 rankuni 8726 r0weon 8835 dfac3 8944 dfac5lem4 8949 dfac8 8957 dfacacn 8963 kmlem2 8973 cfslb2n 9090 ttukeylem5 9335 ttukeylem6 9336 brdom7disj 9353 brdom6disj 9354 intwun 9557 wunex2 9560 fnmrc 16267 mrcfval 16268 mrisval 16290 sylow2a 18034 toprntopon 20729 distop 20799 fctop 20808 cctop 20810 ppttop 20811 epttop 20813 fncld 20826 mretopd 20896 toponmre 20897 iscnp2 21043 2ndcsep 21262 kgenf 21344 alexsubALTlem2 21852 pwsiga 30193 sigainb 30199 dmsigagen 30207 pwldsys 30220 ldsysgenld 30223 ldgenpisyslem1 30226 ddemeas 30299 brapply 32045 dfrdg4 32058 fnessref 32352 neibastop1 32354 finxpreclem2 33227 mbfresfi 33456 pwinfi 37869 pwsal 40535 intsal 40548 salexct 40552 0ome 40743 |
Copyright terms: Public domain | W3C validator |