MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp0 Structured version   Visualization version   Unicode version

Theorem unixp0 5669
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.)
Assertion
Ref Expression
unixp0  |-  ( ( A  X.  B )  =  (/)  <->  U. ( A  X.  B )  =  (/) )

Proof of Theorem unixp0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . 3  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  = 
U. (/) )
2 uni0 4465 . . 3  |-  U. (/)  =  (/)
31, 2syl6eq 2672 . 2  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )
4 n0 3931 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  <->  E. z  z  e.  ( A  X.  B
) )
5 elxp3 5169 . . . . . 6  |-  ( z  e.  ( A  X.  B )  <->  E. x E. y ( <. x ,  y >.  =  z  /\  <. x ,  y
>.  e.  ( A  X.  B ) ) )
6 elssuni 4467 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  C_  U. ( A  X.  B ) )
7 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
8 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
97, 8opnzi 4943 . . . . . . . . 9  |-  <. x ,  y >.  =/=  (/)
10 ssn0 3976 . . . . . . . . 9  |-  ( (
<. x ,  y >.  C_ 
U. ( A  X.  B )  /\  <. x ,  y >.  =/=  (/) )  ->  U. ( A  X.  B
)  =/=  (/) )
116, 9, 10sylancl 694 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  U. ( A  X.  B )  =/=  (/) )
1211adantl 482 . . . . . . 7  |-  ( (
<. x ,  y >.  =  z  /\  <. x ,  y >.  e.  ( A  X.  B ) )  ->  U. ( A  X.  B )  =/=  (/) )
1312exlimivv 1860 . . . . . 6  |-  ( E. x E. y (
<. x ,  y >.  =  z  /\  <. x ,  y >.  e.  ( A  X.  B ) )  ->  U. ( A  X.  B )  =/=  (/) )
145, 13sylbi 207 . . . . 5  |-  ( z  e.  ( A  X.  B )  ->  U. ( A  X.  B )  =/=  (/) )
1514exlimiv 1858 . . . 4  |-  ( E. z  z  e.  ( A  X.  B )  ->  U. ( A  X.  B )  =/=  (/) )
164, 15sylbi 207 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  U. ( A  X.  B )  =/=  (/) )
1716necon4i 2829 . 2  |-  ( U. ( A  X.  B
)  =  (/)  ->  ( A  X.  B )  =  (/) )
183, 17impbii 199 1  |-  ( ( A  X.  B )  =  (/)  <->  U. ( A  X.  B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   <.cop 4183   U.cuni 4436    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-opab 4713  df-xp 5120
This theorem is referenced by:  rankxpsuc  8745
  Copyright terms: Public domain W3C validator