| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unixpid | Structured version Visualization version Unicode version | ||
| Description: Field of a square Cartesian product. (Contributed by FL, 10-Oct-2009.) |
| Ref | Expression |
|---|---|
| unixpid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5128 |
. . . 4
| |
| 2 | 0xp 5199 |
. . . 4
| |
| 3 | 1, 2 | syl6eq 2672 |
. . 3
|
| 4 | unieq 4444 |
. . . . 5
| |
| 5 | 4 | unieqd 4446 |
. . . 4
|
| 6 | uni0 4465 |
. . . . . 6
| |
| 7 | 6 | unieqi 4445 |
. . . . 5
|
| 8 | 7, 6 | eqtri 2644 |
. . . 4
|
| 9 | eqtr 2641 |
. . . . 5
| |
| 10 | eqtr 2641 |
. . . . . . 7
| |
| 11 | 10 | expcom 451 |
. . . . . 6
|
| 12 | 11 | eqcoms 2630 |
. . . . 5
|
| 13 | 9, 12 | syl5com 31 |
. . . 4
|
| 14 | 5, 8, 13 | sylancl 694 |
. . 3
|
| 15 | 3, 14 | mpcom 38 |
. 2
|
| 16 | df-ne 2795 |
. . 3
| |
| 17 | xpnz 5553 |
. . . 4
| |
| 18 | unixp 5668 |
. . . . 5
| |
| 19 | unidm 3756 |
. . . . 5
| |
| 20 | 18, 19 | syl6eq 2672 |
. . . 4
|
| 21 | 17, 20 | sylbi 207 |
. . 3
|
| 22 | 16, 16, 21 | sylancbr 700 |
. 2
|
| 23 | 15, 22 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: psss 17214 |
| Copyright terms: Public domain | W3C validator |