| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unixp | Structured version Visualization version Unicode version | ||
| Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| unixp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5227 |
. . 3
| |
| 2 | relfld 5661 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | xpeq2 5129 |
. . . . 5
| |
| 5 | xp0 5552 |
. . . . 5
| |
| 6 | 4, 5 | syl6eq 2672 |
. . . 4
|
| 7 | 6 | necon3i 2826 |
. . 3
|
| 8 | xpeq1 5128 |
. . . . 5
| |
| 9 | 0xp 5199 |
. . . . 5
| |
| 10 | 8, 9 | syl6eq 2672 |
. . . 4
|
| 11 | 10 | necon3i 2826 |
. . 3
|
| 12 | dmxp 5344 |
. . . 4
| |
| 13 | rnxp 5564 |
. . . 4
| |
| 14 | uneq12 3762 |
. . . 4
| |
| 15 | 12, 13, 14 | syl2an 494 |
. . 3
|
| 16 | 7, 11, 15 | syl2anc 693 |
. 2
|
| 17 | 3, 16 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: unixpid 5670 rankxpl 8738 rankxplim2 8743 rankxplim3 8744 rankxpsuc 8745 |
| Copyright terms: Public domain | W3C validator |