MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp Structured version   Visualization version   Unicode version

Theorem unixp 5668
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unixp  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )

Proof of Theorem unixp
StepHypRef Expression
1 relxp 5227 . . 3  |-  Rel  ( A  X.  B )
2 relfld 5661 . . 3  |-  ( Rel  ( A  X.  B
)  ->  U. U. ( A  X.  B )  =  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) ) )
31, 2ax-mp 5 . 2  |-  U. U. ( A  X.  B
)  =  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )
4 xpeq2 5129 . . . . 5  |-  ( B  =  (/)  ->  ( A  X.  B )  =  ( A  X.  (/) ) )
5 xp0 5552 . . . . 5  |-  ( A  X.  (/) )  =  (/)
64, 5syl6eq 2672 . . . 4  |-  ( B  =  (/)  ->  ( A  X.  B )  =  (/) )
76necon3i 2826 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  B  =/=  (/) )
8 xpeq1 5128 . . . . 5  |-  ( A  =  (/)  ->  ( A  X.  B )  =  ( (/)  X.  B
) )
9 0xp 5199 . . . . 5  |-  ( (/)  X.  B )  =  (/)
108, 9syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  ( A  X.  B )  =  (/) )
1110necon3i 2826 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  A  =/=  (/) )
12 dmxp 5344 . . . 4  |-  ( B  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
13 rnxp 5564 . . . 4  |-  ( A  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
14 uneq12 3762 . . . 4  |-  ( ( dom  ( A  X.  B )  =  A  /\  ran  ( A  X.  B )  =  B )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
1512, 13, 14syl2an 494 . . 3  |-  ( ( B  =/=  (/)  /\  A  =/=  (/) )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
167, 11, 15syl2anc 693 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
173, 16syl5eq 2668 1  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    =/= wne 2794    u. cun 3572   (/)c0 3915   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  unixpid  5670  rankxpl  8738  rankxplim2  8743  rankxplim3  8744  rankxpsuc  8745
  Copyright terms: Public domain W3C validator