Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfnv Structured version   Visualization version   Unicode version

Theorem fullfunfnv 32053
Description: The full functional part of  F is a function over  _V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfnv  |- FullFun F  Fn  _V

Proof of Theorem fullfunfnv
StepHypRef Expression
1 funpartfun 32050 . . . . 5  |-  Fun Funpart F
2 funfn 5918 . . . . 5  |-  ( Fun Funpart F 
<-> Funpart F  Fn  dom Funpart F )
31, 2mpbi 220 . . . 4  |- Funpart F  Fn  dom Funpart F
4 0ex 4790 . . . . . 6  |-  (/)  e.  _V
54fconst 6091 . . . . 5  |-  ( ( _V  \  dom Funpart F )  X.  { (/) } ) : ( _V  \  dom Funpart F ) --> { (/) }
6 ffn 6045 . . . . 5  |-  ( ( ( _V  \  dom Funpart F )  X.  { (/) } ) : ( _V 
\  dom Funpart F ) --> {
(/) }  ->  ( ( _V  \  dom Funpart F )  X.  { (/) } )  Fn  ( _V  \  dom Funpart F ) )
75, 6ax-mp 5 . . . 4  |-  ( ( _V  \  dom Funpart F )  X.  { (/) } )  Fn  ( _V  \  dom Funpart F )
83, 7pm3.2i 471 . . 3  |-  (Funpart F  Fn  dom Funpart F  /\  (
( _V  \  dom Funpart F )  X.  { (/) } )  Fn  ( _V 
\  dom Funpart F ) )
9 disjdif 4040 . . 3  |-  ( dom Funpart F  i^i  ( _V  \  dom Funpart F ) )  =  (/)
10 fnun 5997 . . 3  |-  ( ( (Funpart F  Fn  dom Funpart F  /\  ( ( _V 
\  dom Funpart F )  X. 
{ (/) } )  Fn  ( _V  \  dom Funpart F ) )  /\  ( dom Funpart F  i^i  ( _V 
\  dom Funpart F ) )  =  (/) )  ->  (Funpart F  u.  ( ( _V 
\  dom Funpart F )  X. 
{ (/) } ) )  Fn  ( dom Funpart F  u.  ( _V  \  dom Funpart F ) ) )
118, 9, 10mp2an 708 . 2  |-  (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) )  Fn  ( dom Funpart F  u.  ( _V  \  dom Funpart F ) )
12 df-fullfun 31982 . . . 4  |- FullFun F  =  (Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) )
1312fneq1i 5985 . . 3  |-  (FullFun F  Fn  _V  <->  (Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) )  Fn  _V )
14 unvdif 4042 . . . . 5  |-  ( dom Funpart F  u.  ( _V  \  dom Funpart F ) )  =  _V
1514eqcomi 2631 . . . 4  |-  _V  =  ( dom Funpart F  u.  ( _V  \  dom Funpart F ) )
1615fneq2i 5986 . . 3  |-  ( (Funpart
F  u.  ( ( _V  \  dom Funpart F )  X.  { (/) } ) )  Fn  _V  <->  (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) )  Fn  ( dom Funpart F  u.  ( _V  \  dom Funpart F ) ) )
1713, 16bitri 264 . 2  |-  (FullFun F  Fn  _V  <->  (Funpart F  u.  (
( _V  \  dom Funpart F )  X.  { (/) } ) )  Fn  ( dom Funpart F  u.  ( _V 
\  dom Funpart F ) ) )
1811, 17mpbir 221 1  |- FullFun F  Fn  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177    X. cxp 5112   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   -->wf 5884  Funpartcfunpart 31956  FullFuncfullfn 31957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969  df-singles 31970  df-image 31971  df-funpart 31981  df-fullfun 31982
This theorem is referenced by:  brfullfun  32055
  Copyright terms: Public domain W3C validator