MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrun Structured version   Visualization version   Unicode version

Theorem upgrun 26013
Description: The union  U of two pseudographs  G and  H with the same vertex set  V is a pseudograph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g  |-  ( ph  ->  G  e. UPGraph  )
upgrun.h  |-  ( ph  ->  H  e. UPGraph  )
upgrun.e  |-  E  =  (iEdg `  G )
upgrun.f  |-  F  =  (iEdg `  H )
upgrun.vg  |-  V  =  (Vtx `  G )
upgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
upgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
upgrun.u  |-  ( ph  ->  U  e.  W )
upgrun.v  |-  ( ph  ->  (Vtx `  U )  =  V )
upgrun.un  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
Assertion
Ref Expression
upgrun  |-  ( ph  ->  U  e. UPGraph  )

Proof of Theorem upgrun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 upgrun.g . . . . 5  |-  ( ph  ->  G  e. UPGraph  )
2 upgrun.vg . . . . . 6  |-  V  =  (Vtx `  G )
3 upgrun.e . . . . . 6  |-  E  =  (iEdg `  G )
42, 3upgrf 25981 . . . . 5  |-  ( G  e. UPGraph  ->  E : dom  E --> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
51, 4syl 17 . . . 4  |-  ( ph  ->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
6 upgrun.h . . . . . 6  |-  ( ph  ->  H  e. UPGraph  )
7 eqid 2622 . . . . . . 7  |-  (Vtx `  H )  =  (Vtx
`  H )
8 upgrun.f . . . . . . 7  |-  F  =  (iEdg `  H )
97, 8upgrf 25981 . . . . . 6  |-  ( H  e. UPGraph  ->  F : dom  F --> { x  e.  ( ~P (Vtx `  H
)  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
106, 9syl 17 . . . . 5  |-  ( ph  ->  F : dom  F --> { x  e.  ( ~P (Vtx `  H )  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
11 upgrun.vh . . . . . . . . . 10  |-  ( ph  ->  (Vtx `  H )  =  V )
1211eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  V  =  (Vtx `  H ) )
1312pweqd 4163 . . . . . . . 8  |-  ( ph  ->  ~P V  =  ~P (Vtx `  H ) )
1413difeq1d 3727 . . . . . . 7  |-  ( ph  ->  ( ~P V  \  { (/) } )  =  ( ~P (Vtx `  H )  \  { (/)
} ) )
1514rabeqdv 3194 . . . . . 6  |-  ( ph  ->  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 }  =  {
x  e.  ( ~P (Vtx `  H )  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
1615feq3d 6032 . . . . 5  |-  ( ph  ->  ( F : dom  F --> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  F : dom  F --> { x  e.  ( ~P (Vtx `  H )  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
1710, 16mpbird 247 . . . 4  |-  ( ph  ->  F : dom  F --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
18 upgrun.i . . . 4  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
195, 17, 18fun2d 6068 . . 3  |-  ( ph  ->  ( E  u.  F
) : ( dom 
E  u.  dom  F
) --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
20 upgrun.un . . . 4  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
2120dmeqd 5326 . . . . 5  |-  ( ph  ->  dom  (iEdg `  U
)  =  dom  ( E  u.  F )
)
22 dmun 5331 . . . . 5  |-  dom  ( E  u.  F )  =  ( dom  E  u.  dom  F )
2321, 22syl6eq 2672 . . . 4  |-  ( ph  ->  dom  (iEdg `  U
)  =  ( dom 
E  u.  dom  F
) )
24 upgrun.v . . . . . . 7  |-  ( ph  ->  (Vtx `  U )  =  V )
2524pweqd 4163 . . . . . 6  |-  ( ph  ->  ~P (Vtx `  U
)  =  ~P V
)
2625difeq1d 3727 . . . . 5  |-  ( ph  ->  ( ~P (Vtx `  U )  \  { (/)
} )  =  ( ~P V  \  { (/)
} ) )
2726rabeqdv 3194 . . . 4  |-  ( ph  ->  { x  e.  ( ~P (Vtx `  U
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  =  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
2820, 23, 27feq123d 6034 . . 3  |-  ( ph  ->  ( (iEdg `  U
) : dom  (iEdg `  U ) --> { x  e.  ( ~P (Vtx `  U )  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  ( E  u.  F ) : ( dom  E  u.  dom  F ) --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
2919, 28mpbird 247 . 2  |-  ( ph  ->  (iEdg `  U ) : dom  (iEdg `  U
) --> { x  e.  ( ~P (Vtx `  U )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
30 upgrun.u . . 3  |-  ( ph  ->  U  e.  W )
31 eqid 2622 . . . 4  |-  (Vtx `  U )  =  (Vtx
`  U )
32 eqid 2622 . . . 4  |-  (iEdg `  U )  =  (iEdg `  U )
3331, 32isupgr 25979 . . 3  |-  ( U  e.  W  ->  ( U  e. UPGraph  <->  (iEdg `  U ) : dom  (iEdg `  U
) --> { x  e.  ( ~P (Vtx `  U )  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
3430, 33syl 17 . 2  |-  ( ph  ->  ( U  e. UPGraph  <->  (iEdg `  U
) : dom  (iEdg `  U ) --> { x  e.  ( ~P (Vtx `  U )  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
3529, 34mpbird 247 1  |-  ( ph  ->  U  e. UPGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-upgr 25977
This theorem is referenced by:  upgrunop  26014  uspgrun  26080
  Copyright terms: Public domain W3C validator