| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrun | Structured version Visualization version Unicode version | ||
| Description: The union |
| Ref | Expression |
|---|---|
| upgrun.g |
|
| upgrun.h |
|
| upgrun.e |
|
| upgrun.f |
|
| upgrun.vg |
|
| upgrun.vh |
|
| upgrun.i |
|
| upgrun.u |
|
| upgrun.v |
|
| upgrun.un |
|
| Ref | Expression |
|---|---|
| upgrun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrun.g |
. . . . 5
| |
| 2 | upgrun.vg |
. . . . . 6
| |
| 3 | upgrun.e |
. . . . . 6
| |
| 4 | 2, 3 | upgrf 25981 |
. . . . 5
|
| 5 | 1, 4 | syl 17 |
. . . 4
|
| 6 | upgrun.h |
. . . . . 6
| |
| 7 | eqid 2622 |
. . . . . . 7
| |
| 8 | upgrun.f |
. . . . . . 7
| |
| 9 | 7, 8 | upgrf 25981 |
. . . . . 6
|
| 10 | 6, 9 | syl 17 |
. . . . 5
|
| 11 | upgrun.vh |
. . . . . . . . . 10
| |
| 12 | 11 | eqcomd 2628 |
. . . . . . . . 9
|
| 13 | 12 | pweqd 4163 |
. . . . . . . 8
|
| 14 | 13 | difeq1d 3727 |
. . . . . . 7
|
| 15 | 14 | rabeqdv 3194 |
. . . . . 6
|
| 16 | 15 | feq3d 6032 |
. . . . 5
|
| 17 | 10, 16 | mpbird 247 |
. . . 4
|
| 18 | upgrun.i |
. . . 4
| |
| 19 | 5, 17, 18 | fun2d 6068 |
. . 3
|
| 20 | upgrun.un |
. . . 4
| |
| 21 | 20 | dmeqd 5326 |
. . . . 5
|
| 22 | dmun 5331 |
. . . . 5
| |
| 23 | 21, 22 | syl6eq 2672 |
. . . 4
|
| 24 | upgrun.v |
. . . . . . 7
| |
| 25 | 24 | pweqd 4163 |
. . . . . 6
|
| 26 | 25 | difeq1d 3727 |
. . . . 5
|
| 27 | 26 | rabeqdv 3194 |
. . . 4
|
| 28 | 20, 23, 27 | feq123d 6034 |
. . 3
|
| 29 | 19, 28 | mpbird 247 |
. 2
|
| 30 | upgrun.u |
. . 3
| |
| 31 | eqid 2622 |
. . . 4
| |
| 32 | eqid 2622 |
. . . 4
| |
| 33 | 31, 32 | isupgr 25979 |
. . 3
|
| 34 | 30, 33 | syl 17 |
. 2
|
| 35 | 29, 34 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-upgr 25977 |
| This theorem is referenced by: upgrunop 26014 uspgrun 26080 |
| Copyright terms: Public domain | W3C validator |