MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0v Structured version   Visualization version   Unicode version

Theorem vtxdg0v 26369
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
vtxdgf.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
vtxdg0v  |-  ( ( G  =  (/)  /\  U  e.  V )  ->  (
(VtxDeg `  G ) `  U )  =  0 )

Proof of Theorem vtxdg0v
StepHypRef Expression
1 vtxdgf.v . . . . 5  |-  V  =  (Vtx `  G )
21eleq2i 2693 . . . 4  |-  ( U  e.  V  <->  U  e.  (Vtx `  G ) )
3 fveq2 6191 . . . . . 6  |-  ( G  =  (/)  ->  (Vtx `  G )  =  (Vtx
`  (/) ) )
4 vtxval0 25931 . . . . . 6  |-  (Vtx `  (/) )  =  (/)
53, 4syl6eq 2672 . . . . 5  |-  ( G  =  (/)  ->  (Vtx `  G )  =  (/) )
65eleq2d 2687 . . . 4  |-  ( G  =  (/)  ->  ( U  e.  (Vtx `  G
)  <->  U  e.  (/) ) )
72, 6syl5bb 272 . . 3  |-  ( G  =  (/)  ->  ( U  e.  V  <->  U  e.  (/) ) )
8 noel 3919 . . . 4  |-  -.  U  e.  (/)
98pm2.21i 116 . . 3  |-  ( U  e.  (/)  ->  ( (VtxDeg `  G ) `  U
)  =  0 )
107, 9syl6bi 243 . 2  |-  ( G  =  (/)  ->  ( U  e.  V  ->  (
(VtxDeg `  G ) `  U )  =  0 ) )
1110imp 445 1  |-  ( ( G  =  (/)  /\  U  e.  V )  ->  (
(VtxDeg `  G ) `  U )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915   ` cfv 5888   0cc0 9936  Vtxcvtx 25874  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861  df-base 15863  df-vtx 25876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator