MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval Structured version   Visualization version   Unicode version

Theorem vtxval 25878
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxval  |-  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )

Proof of Theorem vtxval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( g  =  G  ->  (
g  e.  ( _V 
X.  _V )  <->  G  e.  ( _V  X.  _V )
) )
2 fveq2 6191 . . . 4  |-  ( g  =  G  ->  ( 1st `  g )  =  ( 1st `  G
) )
3 fveq2 6191 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
41, 2, 3ifbieq12d 4113 . . 3  |-  ( g  =  G  ->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G ) ,  (
Base `  G )
) )
5 df-vtx 25876 . . 3  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
6 fvex 6201 . . . 4  |-  ( 1st `  G )  e.  _V
7 fvex 6201 . . . 4  |-  ( Base `  G )  e.  _V
86, 7ifex 4156 . . 3  |-  if ( G  e.  ( _V 
X.  _V ) ,  ( 1st `  G ) ,  ( Base `  G
) )  e.  _V
94, 5, 8fvmpt 6282 . 2  |-  ( G  e.  _V  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )
10 fvprc 6185 . . 3  |-  ( -.  G  e.  _V  ->  (
Base `  G )  =  (/) )
11 prcnel 3218 . . . 4  |-  ( -.  G  e.  _V  ->  -.  G  e.  ( _V 
X.  _V ) )
1211iffalsed 4097 . . 3  |-  ( -.  G  e.  _V  ->  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )  =  ( Base `  G
) )
13 fvprc 6185 . . 3  |-  ( -.  G  e.  _V  ->  (Vtx
`  G )  =  (/) )
1410, 12, 133eqtr4rd 2667 . 2  |-  ( -.  G  e.  _V  ->  (Vtx
`  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G ) ,  (
Base `  G )
) )
159, 14pm2.61i 176 1  |-  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ifcif 4086    X. cxp 5112   ` cfv 5888   1stc1st 7166   Basecbs 15857  Vtxcvtx 25874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-vtx 25876
This theorem is referenced by:  opvtxval  25883  funvtxdmge2val  25891  funvtxdm2val  25893  snstrvtxval  25929  vtxval0  25931
  Copyright terms: Public domain W3C validator