| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrlem8 | Structured version Visualization version Unicode version | ||
| Description: Lemma for well-founded
recursion. Compute the prececessor class for an
|
| Ref | Expression |
|---|---|
| wfrlem6.1 |
|
| Ref | Expression |
|---|---|
| wfrlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfrlem6.1 |
. . . . 5
| |
| 2 | 1 | wfrdmss 7421 |
. . . 4
|
| 3 | predpredss 5686 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | 4 | biantru 526 |
. 2
|
| 6 | preddif 5705 |
. . . 4
| |
| 7 | 6 | eqeq1i 2627 |
. . 3
|
| 8 | ssdif0 3942 |
. . 3
| |
| 9 | 7, 8 | bitr4i 267 |
. 2
|
| 10 | eqss 3618 |
. 2
| |
| 11 | 5, 9, 10 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-wrecs 7407 |
| This theorem is referenced by: wfrlem10 7424 |
| Copyright terms: Public domain | W3C validator |