MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem8 Structured version   Visualization version   Unicode version

Theorem wfrlem8 7422
Description: Lemma for well-founded recursion. Compute the prececessor class for an  R minimal element of  ( A  \  dom  F ). (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6.1  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfrlem8  |-  ( Pred ( R ,  ( A  \  dom  F
) ,  X )  =  (/)  <->  Pred ( R ,  A ,  X )  =  Pred ( R ,  dom  F ,  X ) )

Proof of Theorem wfrlem8
StepHypRef Expression
1 wfrlem6.1 . . . . 5  |-  F  = wrecs ( R ,  A ,  G )
21wfrdmss 7421 . . . 4  |-  dom  F  C_  A
3 predpredss 5686 . . . 4  |-  ( dom 
F  C_  A  ->  Pred ( R ,  dom  F ,  X )  C_  Pred ( R ,  A ,  X ) )
42, 3ax-mp 5 . . 3  |-  Pred ( R ,  dom  F ,  X )  C_  Pred ( R ,  A ,  X )
54biantru 526 . 2  |-  ( Pred ( R ,  A ,  X )  C_  Pred ( R ,  dom  F ,  X )  <->  ( Pred ( R ,  A ,  X )  C_  Pred ( R ,  dom  F ,  X )  /\  Pred ( R ,  dom  F ,  X )  C_  Pred ( R ,  A ,  X ) ) )
6 preddif 5705 . . . 4  |-  Pred ( R ,  ( A  \  dom  F ) ,  X )  =  (
Pred ( R ,  A ,  X )  \  Pred ( R ,  dom  F ,  X ) )
76eqeq1i 2627 . . 3  |-  ( Pred ( R ,  ( A  \  dom  F
) ,  X )  =  (/)  <->  ( Pred ( R ,  A ,  X )  \  Pred ( R ,  dom  F ,  X ) )  =  (/) )
8 ssdif0 3942 . . 3  |-  ( Pred ( R ,  A ,  X )  C_  Pred ( R ,  dom  F ,  X )  <->  ( Pred ( R ,  A ,  X )  \  Pred ( R ,  dom  F ,  X ) )  =  (/) )
97, 8bitr4i 267 . 2  |-  ( Pred ( R ,  ( A  \  dom  F
) ,  X )  =  (/)  <->  Pred ( R ,  A ,  X )  C_ 
Pred ( R ,  dom  F ,  X ) )
10 eqss 3618 . 2  |-  ( Pred ( R ,  A ,  X )  =  Pred ( R ,  dom  F ,  X )  <->  ( Pred ( R ,  A ,  X )  C_  Pred ( R ,  dom  F ,  X )  /\  Pred ( R ,  dom  F ,  X )  C_  Pred ( R ,  A ,  X ) ) )
115, 9, 103bitr4i 292 1  |-  ( Pred ( R ,  ( A  \  dom  F
) ,  X )  =  (/)  <->  Pred ( R ,  A ,  X )  =  Pred ( R ,  dom  F ,  X ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    \ cdif 3571    C_ wss 3574   (/)c0 3915   dom cdm 5114   Predcpred 5679  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wfrlem10  7424
  Copyright terms: Public domain W3C validator