MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem10 Structured version   Visualization version   Unicode version

Theorem wfrlem10 7424
Description: Lemma for well-founded recursion. When  z is an  R minimal element of  ( A  \  dom  F ), then its predecessor class is equal to  dom  F. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem10.1  |-  R  We  A
wfrlem10.2  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfrlem10  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  Pred ( R ,  A , 
z )  =  dom  F )
Distinct variable group:    z, A
Allowed substitution hints:    R( z)    F( z)    G( z)

Proof of Theorem wfrlem10
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 wfrlem10.2 . . . 4  |-  F  = wrecs ( R ,  A ,  G )
21wfrlem8 7422 . . 3  |-  ( Pred ( R ,  ( A  \  dom  F
) ,  z )  =  (/)  <->  Pred ( R ,  A ,  z )  =  Pred ( R ,  dom  F ,  z ) )
32biimpi 206 . 2  |-  ( Pred ( R ,  ( A  \  dom  F
) ,  z )  =  (/)  ->  Pred ( R ,  A , 
z )  =  Pred ( R ,  dom  F ,  z ) )
4 predss 5687 . . . 4  |-  Pred ( R ,  dom  F , 
z )  C_  dom  F
54a1i 11 . . 3  |-  ( z  e.  ( A  \  dom  F )  ->  Pred ( R ,  dom  F , 
z )  C_  dom  F )
6 simpr 477 . . . . . 6  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  w  e.  dom  F )
7 eldifn 3733 . . . . . . . . . 10  |-  ( z  e.  ( A  \  dom  F )  ->  -.  z  e.  dom  F )
8 eleq1 2689 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w  e.  dom  F  <->  z  e.  dom  F ) )
98notbid 308 . . . . . . . . . 10  |-  ( w  =  z  ->  ( -.  w  e.  dom  F  <->  -.  z  e.  dom  F ) )
107, 9syl5ibrcom 237 . . . . . . . . 9  |-  ( z  e.  ( A  \  dom  F )  ->  (
w  =  z  ->  -.  w  e.  dom  F ) )
1110con2d 129 . . . . . . . 8  |-  ( z  e.  ( A  \  dom  F )  ->  (
w  e.  dom  F  ->  -.  w  =  z ) )
1211imp 445 . . . . . . 7  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  -.  w  =  z )
131wfrdmcl 7423 . . . . . . . . . 10  |-  ( w  e.  dom  F  ->  Pred ( R ,  A ,  w )  C_  dom  F )
1413adantl 482 . . . . . . . . 9  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  Pred ( R ,  A ,  w
)  C_  dom  F )
15 ssel 3597 . . . . . . . . . . . 12  |-  ( Pred ( R ,  A ,  w )  C_  dom  F  ->  ( z  e. 
Pred ( R ,  A ,  w )  ->  z  e.  dom  F
) )
1615con3d 148 . . . . . . . . . . 11  |-  ( Pred ( R ,  A ,  w )  C_  dom  F  ->  ( -.  z  e.  dom  F  ->  -.  z  e.  Pred ( R ,  A ,  w
) ) )
177, 16syl5com 31 . . . . . . . . . 10  |-  ( z  e.  ( A  \  dom  F )  ->  ( Pred ( R ,  A ,  w )  C_  dom  F  ->  -.  z  e.  Pred ( R ,  A ,  w ) ) )
1817adantr 481 . . . . . . . . 9  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  ( Pred ( R ,  A ,  w )  C_  dom  F  ->  -.  z  e.  Pred ( R ,  A ,  w ) ) )
1914, 18mpd 15 . . . . . . . 8  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  -.  z  e.  Pred ( R ,  A ,  w )
)
20 eldifi 3732 . . . . . . . . 9  |-  ( z  e.  ( A  \  dom  F )  ->  z  e.  A )
21 elpredg 5694 . . . . . . . . . 10  |-  ( ( w  e.  dom  F  /\  z  e.  A
)  ->  ( z  e.  Pred ( R ,  A ,  w )  <->  z R w ) )
2221ancoms 469 . . . . . . . . 9  |-  ( ( z  e.  A  /\  w  e.  dom  F )  ->  ( z  e. 
Pred ( R ,  A ,  w )  <->  z R w ) )
2320, 22sylan 488 . . . . . . . 8  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  ( z  e.  Pred ( R ,  A ,  w )  <->  z R w ) )
2419, 23mtbid 314 . . . . . . 7  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  -.  z R w )
251wfrdmss 7421 . . . . . . . . 9  |-  dom  F  C_  A
2625sseli 3599 . . . . . . . 8  |-  ( w  e.  dom  F  ->  w  e.  A )
27 wfrlem10.1 . . . . . . . . . 10  |-  R  We  A
28 weso 5105 . . . . . . . . . 10  |-  ( R  We  A  ->  R  Or  A )
2927, 28ax-mp 5 . . . . . . . . 9  |-  R  Or  A
30 solin 5058 . . . . . . . . 9  |-  ( ( R  Or  A  /\  ( w  e.  A  /\  z  e.  A
) )  ->  (
w R z  \/  w  =  z  \/  z R w ) )
3129, 30mpan 706 . . . . . . . 8  |-  ( ( w  e.  A  /\  z  e.  A )  ->  ( w R z  \/  w  =  z  \/  z R w ) )
3226, 20, 31syl2anr 495 . . . . . . 7  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  ( w R z  \/  w  =  z  \/  z R w ) )
3312, 24, 32ecase23d 1436 . . . . . 6  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  w R
z )
34 vex 3203 . . . . . . 7  |-  z  e. 
_V
35 vex 3203 . . . . . . . 8  |-  w  e. 
_V
3635elpred 5693 . . . . . . 7  |-  ( z  e.  _V  ->  (
w  e.  Pred ( R ,  dom  F , 
z )  <->  ( w  e.  dom  F  /\  w R z ) ) )
3734, 36ax-mp 5 . . . . . 6  |-  ( w  e.  Pred ( R ,  dom  F ,  z )  <-> 
( w  e.  dom  F  /\  w R z ) )
386, 33, 37sylanbrc 698 . . . . 5  |-  ( ( z  e.  ( A 
\  dom  F )  /\  w  e.  dom  F )  ->  w  e.  Pred ( R ,  dom  F ,  z ) )
3938ex 450 . . . 4  |-  ( z  e.  ( A  \  dom  F )  ->  (
w  e.  dom  F  ->  w  e.  Pred ( R ,  dom  F , 
z ) ) )
4039ssrdv 3609 . . 3  |-  ( z  e.  ( A  \  dom  F )  ->  dom  F 
C_  Pred ( R ,  dom  F ,  z ) )
415, 40eqssd 3620 . 2  |-  ( z  e.  ( A  \  dom  F )  ->  Pred ( R ,  dom  F , 
z )  =  dom  F )
423, 41sylan9eqr 2678 1  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  Pred ( R ,  A , 
z )  =  dom  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034    We wwe 5072   dom cdm 5114   Predcpred 5679  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-so 5036  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wfrlem15  7429
  Copyright terms: Public domain W3C validator