| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrdmcl | Structured version Visualization version Unicode version | ||
| Description: Given |
| Ref | Expression |
|---|---|
| wfrlem6.1 |
|
| Ref | Expression |
|---|---|
| wfrdmcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfrlem6.1 |
. . . . . . . 8
| |
| 2 | df-wrecs 7407 |
. . . . . . . 8
| |
| 3 | 1, 2 | eqtri 2644 |
. . . . . . 7
|
| 4 | 3 | dmeqi 5325 |
. . . . . 6
|
| 5 | dmuni 5334 |
. . . . . 6
| |
| 6 | 4, 5 | eqtri 2644 |
. . . . 5
|
| 7 | 6 | eleq2i 2693 |
. . . 4
|
| 8 | eliun 4524 |
. . . 4
| |
| 9 | 7, 8 | bitri 264 |
. . 3
|
| 10 | eqid 2622 |
. . . . . . . 8
| |
| 11 | 10 | wfrlem1 7414 |
. . . . . . 7
|
| 12 | 11 | abeq2i 2735 |
. . . . . 6
|
| 13 | predeq3 5684 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | sseq1d 3632 |
. . . . . . . . . . . 12
|
| 15 | 14 | rspccv 3306 |
. . . . . . . . . . 11
|
| 16 | 15 | adantl 482 |
. . . . . . . . . 10
|
| 17 | fndm 5990 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 19 | 17 | sseq2d 3633 |
. . . . . . . . . . . 12
|
| 20 | 18, 19 | imbi12d 334 |
. . . . . . . . . . 11
|
| 21 | 20 | adantr 481 |
. . . . . . . . . 10
|
| 22 | 16, 21 | mpbird 247 |
. . . . . . . . 9
|
| 23 | 22 | adantrl 752 |
. . . . . . . 8
|
| 24 | 23 | 3adant3 1081 |
. . . . . . 7
|
| 25 | 24 | exlimiv 1858 |
. . . . . 6
|
| 26 | 12, 25 | sylbi 207 |
. . . . 5
|
| 27 | 26 | reximia 3009 |
. . . 4
|
| 28 | ssiun 4562 |
. . . 4
| |
| 29 | 27, 28 | syl 17 |
. . 3
|
| 30 | 9, 29 | sylbi 207 |
. 2
|
| 31 | 30, 6 | syl6sseqr 3652 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-wrecs 7407 |
| This theorem is referenced by: wfrlem10 7424 wfrlem14 7428 wfrlem15 7429 |
| Copyright terms: Public domain | W3C validator |