MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrdmcl Structured version   Visualization version   Unicode version

Theorem wfrdmcl 7423
Description: Given  F  = wrecs ( R ,  A ,  X )  /\  X  e.  dom  F, then its predecessor class is a subset of  dom  F. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6.1  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfrdmcl  |-  ( X  e.  dom  F  ->  Pred ( R ,  A ,  X )  C_  dom  F )

Proof of Theorem wfrdmcl
Dummy variables  f 
g  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem6.1 . . . . . . . 8  |-  F  = wrecs ( R ,  A ,  G )
2 df-wrecs 7407 . . . . . . . 8  |- wrecs ( R ,  A ,  G
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) }
31, 2eqtri 2644 . . . . . . 7  |-  F  = 
U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
43dmeqi 5325 . . . . . 6  |-  dom  F  =  dom  U. { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
5 dmuni 5334 . . . . . 6  |-  dom  U. { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  U_ g  e. 
{ f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } dom  g
64, 5eqtri 2644 . . . . 5  |-  dom  F  =  U_ g  e.  {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) } dom  g
76eleq2i 2693 . . . 4  |-  ( X  e.  dom  F  <->  X  e.  U_ g  e.  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } dom  g )
8 eliun 4524 . . . 4  |-  ( X  e.  U_ g  e. 
{ f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } dom  g  <->  E. g  e.  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } X  e.  dom  g
)
97, 8bitri 264 . . 3  |-  ( X  e.  dom  F  <->  E. g  e.  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } X  e.  dom  g
)
10 eqid 2622 . . . . . . . 8  |-  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
1110wfrlem1 7414 . . . . . . 7  |-  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  { g  |  E. z ( g  Fn  z  /\  (
z  C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) }
1211abeq2i 2735 . . . . . 6  |-  ( g  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  <->  E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) )
13 predeq3 5684 . . . . . . . . . . . . 13  |-  ( w  =  X  ->  Pred ( R ,  A ,  w )  =  Pred ( R ,  A ,  X ) )
1413sseq1d 3632 . . . . . . . . . . . 12  |-  ( w  =  X  ->  ( Pred ( R ,  A ,  w )  C_  z  <->  Pred ( R ,  A ,  X )  C_  z
) )
1514rspccv 3306 . . . . . . . . . . 11  |-  ( A. w  e.  z  Pred ( R ,  A ,  w )  C_  z  ->  ( X  e.  z  ->  Pred ( R ,  A ,  X )  C_  z ) )
1615adantl 482 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  ->  ( X  e.  z  ->  Pred ( R ,  A ,  X )  C_  z
) )
17 fndm 5990 . . . . . . . . . . . . 13  |-  ( g  Fn  z  ->  dom  g  =  z )
1817eleq2d 2687 . . . . . . . . . . . 12  |-  ( g  Fn  z  ->  ( X  e.  dom  g  <->  X  e.  z ) )
1917sseq2d 3633 . . . . . . . . . . . 12  |-  ( g  Fn  z  ->  ( Pred ( R ,  A ,  X )  C_  dom  g 
<-> 
Pred ( R ,  A ,  X )  C_  z ) )
2018, 19imbi12d 334 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  (
( X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_ 
dom  g )  <->  ( X  e.  z  ->  Pred ( R ,  A ,  X )  C_  z
) ) )
2120adantr 481 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  ->  ( ( X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_  dom  g )  <->  ( X  e.  z  ->  Pred ( R ,  A ,  X )  C_  z
) ) )
2216, 21mpbird 247 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  ->  ( X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_  dom  g ) )
2322adantrl 752 . . . . . . . 8  |-  ( ( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z ) )  -> 
( X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_ 
dom  g ) )
24233adant3 1081 . . . . . . 7  |-  ( ( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  (
g `  w )  =  ( G `  ( g  |`  Pred ( R ,  A ,  w ) ) ) )  ->  ( X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_  dom  g ) )
2524exlimiv 1858 . . . . . 6  |-  ( E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  Pred ( R ,  A ,  w )
) ) )  -> 
( X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_ 
dom  g ) )
2612, 25sylbi 207 . . . . 5  |-  ( g  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  ( X  e. 
dom  g  ->  Pred ( R ,  A ,  X )  C_  dom  g ) )
2726reximia 3009 . . . 4  |-  ( E. g  e.  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } X  e.  dom  g  ->  E. g  e.  {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) } Pred ( R ,  A ,  X )  C_  dom  g )
28 ssiun 4562 . . . 4  |-  ( E. g  e.  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
Pred ( R ,  A ,  X )  C_ 
dom  g  ->  Pred ( R ,  A ,  X )  C_  U_ g  e.  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } dom  g )
2927, 28syl 17 . . 3  |-  ( E. g  e.  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } X  e.  dom  g  ->  Pred ( R ,  A ,  X )  C_ 
U_ g  e.  {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) } dom  g
)
309, 29sylbi 207 . 2  |-  ( X  e.  dom  F  ->  Pred ( R ,  A ,  X )  C_  U_ g  e.  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } dom  g )
3130, 6syl6sseqr 3652 1  |-  ( X  e.  dom  F  ->  Pred ( R ,  A ,  X )  C_  dom  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   U_ciun 4520   dom cdm 5114    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wfrlem10  7424  wfrlem14  7428  wfrlem15  7429
  Copyright terms: Public domain W3C validator