Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-exeq Structured version   Visualization version   Unicode version

Theorem wl-exeq 33321
Description: The semantics of  E. x
y  =  z. (Contributed by Wolf Lammen, 27-Apr-2018.)
Assertion
Ref Expression
wl-exeq  |-  ( E. x  y  =  z  <-> 
( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z
) )

Proof of Theorem wl-exeq
StepHypRef Expression
1 nfeqf 2301 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  y  =  z )
2119.9d 2070 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. x  y  =  z  ->  y  =  z ) )
32impancom 456 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  E. x  y  =  z
)  ->  ( -.  A. x  x  =  z  ->  y  =  z ) )
43orrd 393 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  E. x  y  =  z
)  ->  ( A. x  x  =  z  \/  y  =  z
) )
54expcom 451 . . . 4  |-  ( E. x  y  =  z  ->  ( -.  A. x  x  =  y  ->  ( A. x  x  =  z  \/  y  =  z ) ) )
65orrd 393 . . 3  |-  ( E. x  y  =  z  ->  ( A. x  x  =  y  \/  ( A. x  x  =  z  \/  y  =  z ) ) )
7 3orrot 1044 . . . 4  |-  ( ( y  =  z  \/ 
A. x  x  =  y  \/  A. x  x  =  z )  <->  ( A. x  x  =  y  \/  A. x  x  =  z  \/  y  =  z )
)
8 3orass 1040 . . . 4  |-  ( ( A. x  x  =  y  \/  A. x  x  =  z  \/  y  =  z )  <->  ( A. x  x  =  y  \/  ( A. x  x  =  z  \/  y  =  z
) ) )
97, 8bitri 264 . . 3  |-  ( ( y  =  z  \/ 
A. x  x  =  y  \/  A. x  x  =  z )  <->  ( A. x  x  =  y  \/  ( A. x  x  =  z  \/  y  =  z
) ) )
106, 9sylibr 224 . 2  |-  ( E. x  y  =  z  ->  ( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z ) )
11 19.8a 2052 . . 3  |-  ( y  =  z  ->  E. x  y  =  z )
12 ax6e 2250 . . . . 5  |-  E. x  x  =  z
13 ax7 1943 . . . . . 6  |-  ( x  =  y  ->  (
x  =  z  -> 
y  =  z ) )
1413com12 32 . . . . 5  |-  ( x  =  z  ->  (
x  =  y  -> 
y  =  z ) )
1512, 14eximii 1764 . . . 4  |-  E. x
( x  =  y  ->  y  =  z )
161519.35i 1806 . . 3  |-  ( A. x  x  =  y  ->  E. x  y  =  z )
17 ax6e 2250 . . . . 5  |-  E. x  x  =  y
1817, 13eximii 1764 . . . 4  |-  E. x
( x  =  z  ->  y  =  z )
191819.35i 1806 . . 3  |-  ( A. x  x  =  z  ->  E. x  y  =  z )
2011, 16, 193jaoi 1391 . 2  |-  ( ( y  =  z  \/ 
A. x  x  =  y  \/  A. x  x  =  z )  ->  E. x  y  =  z )
2110, 20impbii 199 1  |-  ( E. x  y  =  z  <-> 
( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by:  wl-nfeqfb  33323
  Copyright terms: Public domain W3C validator