![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr3rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr3d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3bitr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitr3d 270 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitr3d 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: wdomtr 8480 ltaddsub 10502 leaddsub 10504 eqneg 10745 sqreulem 14099 brcic 16458 nmzsubg 17635 f1omvdconj 17866 dfod2 17981 odf1o2 17988 cyggenod 18286 lvecvscan 19111 znidomb 19910 mdetunilem9 20426 iccpnfcnv 22743 dvcvx 23783 cxple2 24443 wilthlem1 24794 lgslem1 25022 colinearalglem2 25787 axeuclidlem 25842 axcontlem7 25850 fusgrfisstep 26221 hvmulcan 27929 unopf1o 28775 ballotlemrv 30581 subfacp1lem3 31164 subfacp1lem5 31166 wl-sbcom2d 33344 poimirlem26 33435 areacirclem1 33500 areacirc 33505 cdleme50eq 35829 hdmapeq0 37136 hdmap11 37140 rmxdiophlem 37582 nnsum3primesle9 41682 0ringdif 41870 |
Copyright terms: Public domain | W3C validator |