| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonedalem4b | Structured version Visualization version Unicode version | ||
| Description: Lemma for yoneda 16923. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| Ref | Expression |
|---|---|
| yoneda.y |
|
| yoneda.b |
|
| yoneda.1 |
|
| yoneda.o |
|
| yoneda.s |
|
| yoneda.t |
|
| yoneda.q |
|
| yoneda.h |
|
| yoneda.r |
|
| yoneda.e |
|
| yoneda.z |
|
| yoneda.c |
|
| yoneda.w |
|
| yoneda.u |
|
| yoneda.v |
|
| yonedalem21.f |
|
| yonedalem21.x |
|
| yonedalem4.n |
|
| yonedalem4.p |
|
| yonedalem4b.p |
|
| yonedalem4b.g |
|
| Ref | Expression |
|---|---|
| yonedalem4b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yoneda.y |
. . . . 5
| |
| 2 | yoneda.b |
. . . . 5
| |
| 3 | yoneda.1 |
. . . . 5
| |
| 4 | yoneda.o |
. . . . 5
| |
| 5 | yoneda.s |
. . . . 5
| |
| 6 | yoneda.t |
. . . . 5
| |
| 7 | yoneda.q |
. . . . 5
| |
| 8 | yoneda.h |
. . . . 5
| |
| 9 | yoneda.r |
. . . . 5
| |
| 10 | yoneda.e |
. . . . 5
| |
| 11 | yoneda.z |
. . . . 5
| |
| 12 | yoneda.c |
. . . . 5
| |
| 13 | yoneda.w |
. . . . 5
| |
| 14 | yoneda.u |
. . . . 5
| |
| 15 | yoneda.v |
. . . . 5
| |
| 16 | yonedalem21.f |
. . . . 5
| |
| 17 | yonedalem21.x |
. . . . 5
| |
| 18 | yonedalem4.n |
. . . . 5
| |
| 19 | yonedalem4.p |
. . . . 5
| |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | yonedalem4a 16915 |
. . . 4
|
| 21 | 20 | fveq1d 6193 |
. . 3
|
| 22 | 21 | fveq1d 6193 |
. 2
|
| 23 | eqidd 2623 |
. . 3
| |
| 24 | yonedalem4b.p |
. . . 4
| |
| 25 | ovex 6678 |
. . . . . 6
| |
| 26 | 25 | mptex 6486 |
. . . . 5
|
| 27 | 26 | a1i 11 |
. . . 4
|
| 28 | yonedalem4b.g |
. . . . . . 7
| |
| 29 | 28 | adantr 481 |
. . . . . 6
|
| 30 | simpr 477 |
. . . . . . 7
| |
| 31 | 30 | oveq1d 6665 |
. . . . . 6
|
| 32 | 29, 31 | eleqtrrd 2704 |
. . . . 5
|
| 33 | fvexd 6203 |
. . . . 5
| |
| 34 | simplr 792 |
. . . . . . . 8
| |
| 35 | 34 | oveq2d 6666 |
. . . . . . 7
|
| 36 | simpr 477 |
. . . . . . 7
| |
| 37 | 35, 36 | fveq12d 6197 |
. . . . . 6
|
| 38 | 37 | fveq1d 6193 |
. . . . 5
|
| 39 | 32, 33, 38 | fvmptdv2 6298 |
. . . 4
|
| 40 | nfmpt1 4747 |
. . . 4
| |
| 41 | nffvmpt1 6199 |
. . . . . 6
| |
| 42 | nfcv 2764 |
. . . . . 6
| |
| 43 | 41, 42 | nffv 6198 |
. . . . 5
|
| 44 | 43 | nfeq1 2778 |
. . . 4
|
| 45 | 24, 27, 39, 40, 44 | fvmptdf 6296 |
. . 3
|
| 46 | 23, 45 | mpd 15 |
. 2
|
| 47 | 22, 46 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: yonedalem4c 16917 yonedainv 16921 |
| Copyright terms: Public domain | W3C validator |