![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2idlval | Structured version Visualization version GIF version |
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlval.t | . 2 ⊢ 𝑇 = (2Ideal‘𝑅) | |
2 | fveq2 6191 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
3 | 2idlval.i | . . . . . 6 ⊢ 𝐼 = (LIdeal‘𝑅) | |
4 | 2, 3 | syl6eqr 2674 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
5 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
6 | 2idlval.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
7 | 5, 6 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
8 | 7 | fveq2d 6195 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
9 | 2idlval.j | . . . . . 6 ⊢ 𝐽 = (LIdeal‘𝑂) | |
10 | 8, 9 | syl6eqr 2674 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
11 | 4, 10 | ineq12d 3815 | . . . 4 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
12 | df-2idl 19232 | . . . 4 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
13 | fvex 6201 | . . . . . 6 ⊢ (LIdeal‘𝑅) ∈ V | |
14 | 3, 13 | eqeltri 2697 | . . . . 5 ⊢ 𝐼 ∈ V |
15 | 14 | inex1 4799 | . . . 4 ⊢ (𝐼 ∩ 𝐽) ∈ V |
16 | 11, 12, 15 | fvmpt 6282 | . . 3 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
17 | fvprc 6185 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = ∅) | |
18 | inss1 3833 | . . . . 5 ⊢ (𝐼 ∩ 𝐽) ⊆ 𝐼 | |
19 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (LIdeal‘𝑅) = ∅) | |
20 | 3, 19 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐼 = ∅) |
21 | sseq0 3975 | . . . . 5 ⊢ (((𝐼 ∩ 𝐽) ⊆ 𝐼 ∧ 𝐼 = ∅) → (𝐼 ∩ 𝐽) = ∅) | |
22 | 18, 20, 21 | sylancr 695 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐼 ∩ 𝐽) = ∅) |
23 | 17, 22 | eqtr4d 2659 | . . 3 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
24 | 16, 23 | pm2.61i 176 | . 2 ⊢ (2Ideal‘𝑅) = (𝐼 ∩ 𝐽) |
25 | 1, 24 | eqtri 2644 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ‘cfv 5888 opprcoppr 18622 LIdealclidl 19170 2Idealc2idl 19231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-2idl 19232 |
This theorem is referenced by: 2idlcpbl 19234 qus1 19235 qusrhm 19237 crng2idl 19239 |
Copyright terms: Public domain | W3C validator |