MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrhm Structured version   Visualization version   GIF version

Theorem qusrhm 19237
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qusrhm.x 𝑋 = (Base‘𝑅)
qusrhm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
Assertion
Ref Expression
qusrhm ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusrhm
Dummy variables 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2 𝑋 = (Base‘𝑅)
2 eqid 2622 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2622 . 2 (1r𝑈) = (1r𝑈)
4 eqid 2622 . 2 (.r𝑅) = (.r𝑅)
5 eqid 2622 . 2 (.r𝑈) = (.r𝑈)
6 simpl 473 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
7 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
8 qusring.i . . 3 𝐼 = (2Ideal‘𝑅)
97, 8qusring 19236 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
10 eqid 2622 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
11 eqid 2622 . . . . . . . . 9 (oppr𝑅) = (oppr𝑅)
12 eqid 2622 . . . . . . . . 9 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
1310, 11, 12, 82idlval 19233 . . . . . . . 8 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
1413elin2 3801 . . . . . . 7 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1514simplbi 476 . . . . . 6 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
1610lidlsubg 19215 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1715, 16sylan2 491 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
18 eqid 2622 . . . . . 6 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
191, 18eqger 17644 . . . . 5 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋)
2017, 19syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er 𝑋)
21 fvex 6201 . . . . . 6 (Base‘𝑅) ∈ V
221, 21eqeltri 2697 . . . . 5 𝑋 ∈ V
2322a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 ∈ V)
24 qusrhm.f . . . 4 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
2520, 23, 24divsfval 16207 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = [(1r𝑅)](𝑅 ~QG 𝑆))
267, 8, 2qus1 19235 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈)))
2726simprd 479 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈))
2825, 27eqtrd 2656 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = (1r𝑈))
297a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
301a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 = (Base‘𝑅))
311, 18, 8, 42idlcpbl 19234 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
321, 4ringcl 18561 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝑋𝑧𝑋) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
33323expb 1266 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3433adantlr 751 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3534caovclg 6826 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐(.r𝑅)𝑑) ∈ 𝑋)
3629, 30, 20, 6, 31, 35, 4, 5qusmulval 16215 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
37363expb 1266 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
3820adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋)
3922a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → 𝑋 ∈ V)
4038, 39, 24divsfval 16207 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝑅 ~QG 𝑆))
4138, 39, 24divsfval 16207 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝑅 ~QG 𝑆))
4240, 41oveq12d 6668 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)))
4338, 39, 24divsfval 16207 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
4437, 42, 433eqtr4rd 2667 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑈)(𝐹𝑧)))
45 ringabl 18580 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
4645adantr 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
47 ablnsg 18250 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4846, 47syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4917, 48eleqtrrd 2704 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
501, 7, 24qusghm 17697 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
5149, 50syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
521, 2, 3, 4, 5, 6, 9, 28, 44, 51isrhm2d 18728 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cmpt 4729  cfv 5888  (class class class)co 6650   Er wer 7739  [cec 7740  Basecbs 15857  .rcmulr 15942   /s cqus 16165  SubGrpcsubg 17588  NrmSGrpcnsg 17589   ~QG cqg 17590   GrpHom cghm 17657  Abelcabl 18194  1rcur 18501  Ringcrg 18547  opprcoppr 18622   RingHom crh 18712  LIdealclidl 19170  2Idealc2idl 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-2idl 19232
This theorem is referenced by:  znzrh2  19894
  Copyright terms: Public domain W3C validator