Proof of Theorem 2idlcpbl
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 790 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Ring) |
| 2 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 3 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 4 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(LIdeal‘(oppr‘𝑅)) =
(LIdeal‘(oppr‘𝑅)) |
| 5 | | 2idlcpbl.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (2Ideal‘𝑅) |
| 6 | 2, 3, 4, 5 | 2idlval 19233 |
. . . . . . . . . . . 12
⊢ 𝐼 = ((LIdeal‘𝑅) ∩
(LIdeal‘(oppr‘𝑅))) |
| 7 | 6 | elin2 3801 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)))) |
| 8 | 7 | simplbi 476 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
| 9 | 8 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅)) |
| 10 | 2 | lidlsubg 19215 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 11 | 1, 9, 10 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 12 | | 2idlcpbl.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑅) |
| 13 | | 2idlcpbl.r |
. . . . . . . . 9
⊢ 𝐸 = (𝑅 ~QG 𝑆) |
| 14 | 12, 13 | eqger 17644 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋) |
| 15 | 11, 14 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐸 Er 𝑋) |
| 16 | | simprl 794 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴𝐸𝐶) |
| 17 | 15, 16 | ersym 7754 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶𝐸𝐴) |
| 18 | | ringabl 18580 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
| 19 | 18 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Abel) |
| 20 | 12, 2 | lidlss 19210 |
. . . . . . . 8
⊢ (𝑆 ∈ (LIdeal‘𝑅) → 𝑆 ⊆ 𝑋) |
| 21 | 9, 20 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ⊆ 𝑋) |
| 22 | | eqid 2622 |
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 23 | 12, 22, 13 | eqgabl 18240 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
| 24 | 19, 21, 23 | syl2anc 693 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
| 25 | 17, 24 | mpbid 222 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) |
| 26 | 25 | simp2d 1074 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴 ∈ 𝑋) |
| 27 | | simprr 796 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵𝐸𝐷) |
| 28 | 12, 22, 13 | eqgabl 18240 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
| 29 | 19, 21, 28 | syl2anc 693 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
| 30 | 27, 29 | mpbid 222 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) |
| 31 | 30 | simp1d 1073 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵 ∈ 𝑋) |
| 32 | | 2idlcpbl.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 33 | 12, 32 | ringcl 18561 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
| 34 | 1, 26, 31, 33 | syl3anc 1326 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋) |
| 35 | 25 | simp1d 1073 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶 ∈ 𝑋) |
| 36 | 30 | simp2d 1074 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐷 ∈ 𝑋) |
| 37 | 12, 32 | ringcl 18561 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶 · 𝐷) ∈ 𝑋) |
| 38 | 1, 35, 36, 37 | syl3anc 1326 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋) |
| 39 | | ringgrp 18552 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 40 | 39 | ad2antrr 762 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Grp) |
| 41 | 12, 32 | ringcl 18561 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐶 · 𝐵) ∈ 𝑋) |
| 42 | 1, 35, 31, 41 | syl3anc 1326 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋) |
| 43 | 12, 22 | grpnnncan2 17512 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
| 44 | 40, 38, 34, 42, 43 | syl13anc 1328 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
| 45 | 12, 32, 22, 1, 35, 36, 31 | ringsubdi 18599 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))) |
| 46 | 30 | simp3d 1075 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐷(-g‘𝑅)𝐵) ∈ 𝑆) |
| 47 | 2, 12, 32 | lidlmcl 19217 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
| 48 | 1, 9, 35, 46, 47 | syl22anc 1327 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
| 49 | 45, 48 | eqeltrrd 2702 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
| 50 | | eqid 2622 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 51 | 12, 32, 3, 50 | opprmul 18626 |
. . . . . . 7
⊢ (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴(-g‘𝑅)𝐶) · 𝐵) |
| 52 | 12, 32, 22, 1, 26, 35, 31 | rngsubdir 18600 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴(-g‘𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) |
| 53 | 51, 52 | syl5eq 2668 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴 · 𝐵)(-g‘𝑅)(𝐶
· 𝐵))) |
| 54 | 3 | opprring 18631 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
| 55 | 54 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) →
(oppr‘𝑅) ∈ Ring) |
| 56 | 7 | simprbi 480 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
| 57 | 56 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
| 58 | 25 | simp3d 1075 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴(-g‘𝑅)𝐶) ∈ 𝑆) |
| 59 | 3, 12 | opprbas 18629 |
. . . . . . . 8
⊢ 𝑋 =
(Base‘(oppr‘𝑅)) |
| 60 | 4, 59, 50 | lidlmcl 19217 |
. . . . . . 7
⊢
((((oppr‘𝑅) ∈ Ring ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) ∧ (𝐵 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
| 61 | 55, 57, 31, 58, 60 | syl22anc 1327 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
| 62 | 53, 61 | eqeltrrd 2702 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
| 63 | 2, 22 | lidlsubcl 19216 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
| 64 | 1, 9, 49, 62, 63 | syl22anc 1327 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
| 65 | 44, 64 | eqeltrrd 2702 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆) |
| 66 | 12, 22, 13 | eqgabl 18240 |
. . . 4
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
| 67 | 19, 21, 66 | syl2anc 693 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
| 68 | 34, 38, 65, 67 | mpbir3and 1245 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)) |
| 69 | 68 | ex 450 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |