| Step | Hyp | Ref
| Expression |
| 1 | | 3simpb 1059 |
. . . . . . 7
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
| 2 | 1 | reximi 3011 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
| 3 | | 3simpb 1059 |
. . . . . . 7
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
| 4 | 3 | reximi 3011 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
| 5 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑤)) |
| 6 | 5 | sseq2d 3633 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑤))) |
| 7 | | seqeq1 12804 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹)) |
| 8 | 7 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑧 ↔ seq𝑤( · , 𝐹) ⇝ 𝑧)) |
| 9 | 6, 8 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
| 10 | 9 | cbvrexv 3172 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) |
| 11 | 10 | anbi2i 730 |
. . . . . . . 8
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
| 12 | | reeanv 3107 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
| 13 | 11, 12 | bitr4i 267 |
. . . . . . 7
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ ∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
| 14 | | simprlr 803 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
| 15 | 14 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
| 16 | | prodmo.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
| 17 | | prodmo.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 18 | 17 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 19 | | simprll 802 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑚 ∈ ℤ) |
| 20 | | simprlr 803 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑤 ∈ ℤ) |
| 21 | | simprll 802 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
| 22 | 21 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
| 23 | | simprrl 804 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
| 24 | 23 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
| 25 | 16, 18, 19, 20, 22, 24 | prodrb 14662 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥)) |
| 26 | 15, 25 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑥) |
| 27 | | simprrr 805 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑤( · , 𝐹) ⇝ 𝑧) |
| 28 | 27 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑧) |
| 29 | | climuni 14283 |
. . . . . . . . . . 11
⊢
((seq𝑤( · ,
𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧) → 𝑥 = 𝑧) |
| 30 | 26, 28, 29 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑥 = 𝑧) |
| 31 | 30 | expcom 451 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) |
| 32 | 31 | ex 450 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧))) |
| 33 | 32 | rexlimivv 3036 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
| 34 | 13, 33 | sylbi 207 |
. . . . . 6
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
| 35 | 2, 4, 34 | syl2an 494 |
. . . . 5
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
| 36 | | prodmo.3 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
| 37 | 16, 17, 36 | prodmolem2 14665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑧 = 𝑥)) |
| 38 | | equcomi 1944 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
| 39 | 37, 38 | syl6 35 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
| 40 | 39 | expimpd 629 |
. . . . . . 7
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
| 41 | 40 | com12 32 |
. . . . . 6
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
| 42 | 41 | ancoms 469 |
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
| 43 | 16, 17, 36 | prodmolem2 14665 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
| 44 | 43 | expimpd 629 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
| 45 | 44 | com12 32 |
. . . . 5
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
| 46 | | reeanv 3107 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 47 | | eeanv 2182 |
. . . . . . . . 9
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 48 | 47 | 2rexbii 3042 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ ∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 49 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (1...𝑚) = (1...𝑤)) |
| 50 | | f1oeq2 6128 |
. . . . . . . . . . . . . 14
⊢
((1...𝑚) =
(1...𝑤) → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑤)–1-1-onto→𝐴)) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑤)–1-1-onto→𝐴)) |
| 52 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (seq1( · , 𝐺)‘𝑚) = (seq1( · , 𝐺)‘𝑤)) |
| 53 | 52 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑧 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑤))) |
| 54 | 51, 53 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) |
| 55 | 54 | exbidv 1850 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) |
| 56 | | f1oeq1 6127 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑤)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑤)–1-1-onto→𝐴)) |
| 57 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → (𝑓‘𝑗) = (𝑔‘𝑗)) |
| 58 | 57 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
| 59 | 58 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵)) |
| 60 | 36, 59 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵)) |
| 61 | 60 | seqeq3d 12809 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → seq1( · , 𝐺) = seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))) |
| 62 | 61 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (seq1( · , 𝐺)‘𝑤) = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) |
| 63 | 62 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑧 = (seq1( · , 𝐺)‘𝑤) ↔ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
| 64 | 56, 63 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 65 | 64 | cbvexv 2275 |
. . . . . . . . . . 11
⊢
(∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
| 66 | 55, 65 | syl6bb 276 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 67 | 66 | cbvrexv 3172 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
| 68 | 67 | anbi2i 730 |
. . . . . . . 8
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 69 | 46, 48, 68 | 3bitr4i 292 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
| 70 | | an4 865 |
. . . . . . . . . 10
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
| 71 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝜑) |
| 72 | 71, 17 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 73 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → (𝑓‘𝑗) = (𝑓‘𝑎)) |
| 74 | 73 | csbeq1d 3540 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
| 75 | 74 | cbvmptv 4750 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦
⦋(𝑓‘𝑗) / 𝑘⦌𝐵) = (𝑎 ∈ ℕ ↦ ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
| 76 | 36, 75 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑎 ∈ ℕ ↦ ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
| 77 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → (𝑔‘𝑗) = (𝑔‘𝑎)) |
| 78 | 77 | csbeq1d 3540 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑎 → ⦋(𝑔‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
| 79 | 78 | cbvmptv 4750 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦
⦋(𝑔‘𝑗) / 𝑘⦌𝐵) = (𝑎 ∈ ℕ ↦ ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
| 80 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) |
| 81 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
| 82 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑔:(1...𝑤)–1-1-onto→𝐴) |
| 83 | 16, 72, 76, 79, 80, 81, 82 | prodmolem3 14663 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (seq1( · ,
𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) |
| 84 | | eqeq12 2635 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) → (𝑥 = 𝑧 ↔ (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
| 85 | 83, 84 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) → 𝑥 = 𝑧)) |
| 86 | 85 | expimpd 629 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
| 87 | 70, 86 | syl5bi 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
| 88 | 87 | exlimdvv 1862 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
| 89 | 88 | rexlimdvva 3038 |
. . . . . . 7
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
| 90 | 69, 89 | syl5bir 233 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
| 91 | 90 | com12 32 |
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
| 92 | 35, 42, 45, 91 | ccase 987 |
. . . 4
⊢
(((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → (𝜑 → 𝑥 = 𝑧)) |
| 93 | 92 | com12 32 |
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
| 94 | 93 | alrimivv 1856 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
| 95 | | breq2 4657 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
| 96 | 95 | 3anbi3d 1405 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) |
| 97 | 96 | rexbidv 3052 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) |
| 98 | | eqeq1 2626 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑚))) |
| 99 | 98 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
| 100 | 99 | exbidv 1850 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
| 101 | 100 | rexbidv 3052 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
| 102 | 97, 101 | orbi12d 746 |
. . 3
⊢ (𝑥 = 𝑧 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))))) |
| 103 | 102 | mo4 2517 |
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
| 104 | 94, 103 | sylibr 224 |
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)))) |