Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Structured version   Visualization version   GIF version

Theorem expdiophlem1 37588
Description: Lemma for expdioph 37590. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓   𝐵,𝑑,𝑒,𝑓   𝐶,𝑑,𝑒,𝑓

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 11090 . . . . . . . . . . 11 2 ∈ ℝ
21a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
3 nnre 11027 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
4 peano2re 10209 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℝ)
65adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ∈ ℝ)
7 nnz 11399 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
87peano2zd 11485 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℤ)
9 frmy 37479 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 6765 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℤ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
118, 10sylan2 491 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
1211zred 11482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℝ)
13 elnnuz 11724 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
14 eluzp1p1 11713 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘(1 + 1)))
15 df-2 11079 . . . . . . . . . . . . . . 15 2 = (1 + 1)
1615fveq2i 6194 . . . . . . . . . . . . . 14 (ℤ‘2) = (ℤ‘(1 + 1))
1714, 16syl6eleqr 2712 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘2))
1813, 17sylbi 207 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ (ℤ‘2))
19 eluzle 11700 . . . . . . . . . . . 12 ((𝐵 + 1) ∈ (ℤ‘2) → 2 ≤ (𝐵 + 1))
2018, 19syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 2 ≤ (𝐵 + 1))
2120adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐵 + 1))
22 nnnn0 11299 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
23 peano2nn0 11333 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℕ0)
25 rmygeid 37531 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
2624, 25sylan2 491 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
272, 6, 12, 21, 26letrd 10194 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐴 Yrm (𝐵 + 1)))
28 2z 11409 . . . . . . . . . 10 2 ∈ ℤ
29 eluz 11701 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐴 Yrm (𝐵 + 1)) ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3028, 11, 29sylancr 695 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3127, 30mpbird 247 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
3231adantl 482 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
33 simprl 794 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐴 ∈ (ℤ‘2))
34 simprr 796 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ)
3512leidd 10594 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
3635adantl 482 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
37 jm3.1 37587 . . . . . . 7 ((((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1))) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3832, 33, 34, 36, 37syl31anc 1329 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3938eqeq2d 2632 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ 𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))))
407adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
41 frmx 37478 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4241fovcl 6765 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4331, 40, 42syl2anc 693 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4443nn0zd 11480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℤ)
45 eluzelz 11697 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
4645adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4711, 46zsubcld 11487 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) − 𝐴) ∈ ℤ)
489fovcl 6765 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
4931, 40, 48syl2anc 693 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
5047, 49zmulcld 11488 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)) ∈ ℤ)
5144, 50zsubcld 11487 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5251adantl 482 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5332, 33, 34, 36jm3.1lem3 37586 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ)
54 simpl 473 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐶 ∈ ℕ0)
55 divalgmodcl 15131 . . . . . 6 (((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5652, 53, 54, 55syl3anc 1326 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5739, 56bitrd 268 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
58 rmynn0 37524 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
5924, 58sylan2 491 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
6059adantl 482 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
61 oveq1 6657 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Yrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))
6261eqeq2d 2632 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑒 = (𝑑 Yrm 𝐵) ↔ 𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
63 oveq1 6657 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Xrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵))
6463eqeq2d 2632 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 = (𝑑 Xrm 𝐵) ↔ 𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵)))
65 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (2 · 𝑑) = (2 · (𝐴 Yrm (𝐵 + 1))))
6665oveq1d 6665 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((2 · 𝑑) · 𝐴) = ((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴))
6766oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((2 · 𝑑) · 𝐴) − (𝐴↑2)) = (((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)))
6867oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) = ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))
6968breq2d 4665 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ↔ 𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
70 oveq1 6657 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑𝐴) = ((𝐴 Yrm (𝐵 + 1)) − 𝐴))
7170oveq1d 6665 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑑𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒))
7271oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 − ((𝑑𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)))
7372oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))
7468, 73breq12d 4666 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))
7569, 74anbi12d 747 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))
7664, 75anbi12d 747 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7776rexbidv 3052 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7862, 77anbi12d 747 . . . . . . . . . 10 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
7978rexbidv 3052 . . . . . . . . 9 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8079ceqsrexv 3336 . . . . . . . 8 ((𝐴 Yrm (𝐵 + 1)) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8160, 80syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8222ad2antll 765 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ0)
83 rmynn0 37524 . . . . . . . . 9 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
8432, 82, 83syl2anc 693 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
85 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
8685oveq2d 6666 . . . . . . . . . . . . . 14 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
8786oveq1d 6665 . . . . . . . . . . . . 13 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
8887breq2d 4665 . . . . . . . . . . . 12 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
8988anbi2d 740 . . . . . . . . . . 11 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
9089anbi2d 740 . . . . . . . . . 10 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9190rexbidv 3052 . . . . . . . . 9 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9291ceqsrexv 3336 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0 → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9384, 92syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
947ad2antll 765 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℤ)
9532, 94, 42syl2anc 693 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
96 oveq1 6657 . . . . . . . . . . . 12 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) = (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
9796oveq1d 6665 . . . . . . . . . . 11 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
9897breq2d 4665 . . . . . . . . . 10 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
9998anbi2d 740 . . . . . . . . 9 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10099ceqsrexv 3336 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0 → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10195, 100syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10281, 93, 1013bitrrd 295 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
103 r19.42v 3092 . . . . . . . . . 10 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
104 r19.42v 3092 . . . . . . . . . . 11 (∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
105104anbi2i 730 . . . . . . . . . 10 ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
106103, 105bitri 264 . . . . . . . . 9 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
107106rexbii 3041 . . . . . . . 8 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
108 r19.42v 3092 . . . . . . . 8 (∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
109107, 108bitri 264 . . . . . . 7 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
110109rexbii 3041 . . . . . 6 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
111102, 110syl6bbr 278 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
112 eleq1 2689 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 ∈ (ℤ‘2) ↔ (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2)))
11332, 112syl5ibrcom 237 . . . . . . . . . . 11 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) → 𝑑 ∈ (ℤ‘2)))
114113imp 445 . . . . . . . . . 10 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → 𝑑 ∈ (ℤ‘2))
115 ibar 525 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → (𝑒 = (𝑑 Yrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵))))
116 ibar 525 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ‘2) → (𝑓 = (𝑑 Xrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵))))
117116anbi1d 741 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
118115, 117anbi12d 747 . . . . . . . . . 10 (𝑑 ∈ (ℤ‘2) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
119114, 118syl 17 . . . . . . . . 9 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
120119pm5.32da 673 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
121 ibar 525 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
122121ad2antrl 764 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
123122anbi1d 741 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
124120, 123bitrd 268 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
125124rexbidv 3052 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1261252rexbidv 3057 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
127111, 126bitrd 268 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
12857, 127bitrd 268 . . 3 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
129128pm5.32da 673 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
130 r19.42v 3092 . . . 4 (∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1311302rexbii 3042 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
132 r19.42v 3092 . . . . 5 (∃𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
133132rexbii 3041 . . . 4 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
134 r19.42v 3092 . . . 4 (∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
135133, 134bitri 264 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
136131, 135bitri 264 . 2 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
137129, 136syl6bbr 278 1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687   mod cmo 12668  cexp 12860  cdvds 14983   Xrm crmx 37464   Yrm crmy 37465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409  df-rmx 37466  df-rmy 37467
This theorem is referenced by:  expdiophlem2  37589
  Copyright terms: Public domain W3C validator