| Step | Hyp | Ref
| Expression |
| 1 | | simplr1 1103 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ (𝔼‘𝑁)) |
| 2 | | n0 3931 |
. . . . . 6
⊢ (𝐵 ≠ ∅ ↔
∃𝑏 𝑏 ∈ 𝐵) |
| 3 | | idd 24 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (𝐴 ⊆ (𝔼‘𝑁) → 𝐴 ⊆ (𝔼‘𝑁))) |
| 4 | | ssel 3597 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆ (𝔼‘𝑁) → (𝑏 ∈ 𝐵 → 𝑏 ∈ (𝔼‘𝑁))) |
| 5 | 4 | com12 32 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (𝐵 ⊆ (𝔼‘𝑁) → 𝑏 ∈ (𝔼‘𝑁))) |
| 6 | | opeq2 4403 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → 〈𝑍, 𝑦〉 = 〈𝑍, 𝑏〉) |
| 7 | 6 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → (𝑥 Btwn 〈𝑍, 𝑦〉 ↔ 𝑥 Btwn 〈𝑍, 𝑏〉)) |
| 8 | 7 | rspcv 3305 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉 → 𝑥 Btwn 〈𝑍, 𝑏〉)) |
| 9 | 8 | ralimdv 2963 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉 → ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) |
| 10 | 3, 5, 9 | 3anim123d 1406 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐵 → ((𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉) → (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉))) |
| 11 | 10 | anim2d 589 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐵 → ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)))) |
| 12 | | simplr1 1103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ (𝔼‘𝑁)) |
| 13 | 12 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → 𝐴 ⊆ (𝔼‘𝑁)) |
| 14 | | simplr2 1104 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → 𝑈 ∈ 𝐴) |
| 15 | 13, 14 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → 𝑈 ∈ (𝔼‘𝑁)) |
| 16 | | simpr3 1069 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) → ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉) |
| 17 | | simp2 1062 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈) → 𝑈 ∈ 𝐴) |
| 18 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑈 → (𝑥 Btwn 〈𝑍, 𝑏〉 ↔ 𝑈 Btwn 〈𝑍, 𝑏〉)) |
| 19 | 18 | rspccva 3308 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝐴 𝑥 Btwn 〈𝑍, 𝑏〉 ∧ 𝑈 ∈ 𝐴) → 𝑈 Btwn 〈𝑍, 𝑏〉) |
| 20 | 16, 17, 19 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → 𝑈 Btwn 〈𝑍, 𝑏〉) |
| 21 | 20 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → 𝑈 Btwn 〈𝑍, 𝑏〉) |
| 22 | 15, 21 | jca 554 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑈 Btwn 〈𝑍, 𝑏〉)) |
| 23 | 12 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ (𝔼‘𝑁)) |
| 24 | 16 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉) |
| 25 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑝 → (𝑥 Btwn 〈𝑍, 𝑏〉 ↔ 𝑝 Btwn 〈𝑍, 𝑏〉)) |
| 26 | 25 | rspccva 3308 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝐴 𝑥 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 ∈ 𝐴) → 𝑝 Btwn 〈𝑍, 𝑏〉) |
| 27 | 24, 26 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → 𝑝 Btwn 〈𝑍, 𝑏〉) |
| 28 | 22, 23, 27 | jca32 558 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑈 Btwn 〈𝑍, 𝑏〉) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑝 Btwn 〈𝑍, 𝑏〉))) |
| 29 | | an4 865 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑈 Btwn 〈𝑍, 𝑏〉) ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝑝 Btwn 〈𝑍, 𝑏〉)) ↔ ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ (𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉))) |
| 30 | 28, 29 | sylib 208 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ (𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉))) |
| 31 | | simp2 1062 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉) → 𝑏 ∈ (𝔼‘𝑁)) |
| 32 | | simpl2r 1115 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → 𝑍 ≠ 𝑈) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) → 𝑍 ≠ 𝑈) |
| 34 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → (𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) |
| 35 | 34 | ralimi 2952 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) |
| 36 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ↔ (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (𝑈‘𝑖)) |
| 37 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 0 → (1 − 𝑡) = (1 −
0)) |
| 38 | | 1m0e1 11131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (1
− 0) = 1 |
| 39 | 37, 38 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 0 → (1 − 𝑡) = 1) |
| 40 | 39 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 0 → ((1 − 𝑡) · (𝑍‘𝑖)) = (1 · (𝑍‘𝑖))) |
| 41 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 0 → (𝑡 · (𝑏‘𝑖)) = (0 · (𝑏‘𝑖))) |
| 42 | 40, 41 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 0 → (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = ((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖)))) |
| 43 | 42 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 0 → ((((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (𝑈‘𝑖) ↔ ((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖))) |
| 44 | 36, 43 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 0 → ((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ↔ ((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖))) |
| 45 | 44 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 0 → (∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖))) |
| 46 | 45 | biimpac 503 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((∀𝑖 ∈
(1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ 𝑡 = 0) → ∀𝑖 ∈ (1...𝑁)((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖)) |
| 47 | | simpl2l 1114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → 𝑍 ∈ (𝔼‘𝑁)) |
| 48 | | simpl3l 1116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → 𝑈 ∈ (𝔼‘𝑁)) |
| 49 | | eqeefv 25783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)(𝑍‘𝑖) = (𝑈‘𝑖))) |
| 50 | 47, 48, 49 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)(𝑍‘𝑖) = (𝑈‘𝑖))) |
| 51 | | fveecn 25782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 52 | 47, 51 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 53 | | simp1r 1086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → 𝑏 ∈ (𝔼‘𝑁)) |
| 54 | 53 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑏 ∈ (𝔼‘𝑁)) |
| 55 | | fveecn 25782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑏‘𝑖) ∈ ℂ) |
| 56 | 54, 55 | sylancom 701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑏‘𝑖) ∈ ℂ) |
| 57 | | mulid2 10038 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑍‘𝑖) ∈ ℂ → (1 · (𝑍‘𝑖)) = (𝑍‘𝑖)) |
| 58 | | mul02 10214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏‘𝑖) ∈ ℂ → (0 · (𝑏‘𝑖)) = 0) |
| 59 | 57, 58 | oveqan12d 6669 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) → ((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = ((𝑍‘𝑖) + 0)) |
| 60 | | addid1 10216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑍‘𝑖) ∈ ℂ → ((𝑍‘𝑖) + 0) = (𝑍‘𝑖)) |
| 61 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) → ((𝑍‘𝑖) + 0) = (𝑍‘𝑖)) |
| 62 | 59, 61 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) → ((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑍‘𝑖)) |
| 63 | 52, 56, 62 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑍‘𝑖)) |
| 64 | 63 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖) ↔ (𝑍‘𝑖) = (𝑈‘𝑖))) |
| 65 | 64 | ralbidva 2985 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝑍‘𝑖) = (𝑈‘𝑖))) |
| 66 | 50, 65 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (𝑍 = 𝑈 ↔ ∀𝑖 ∈ (1...𝑁)((1 · (𝑍‘𝑖)) + (0 · (𝑏‘𝑖))) = (𝑈‘𝑖))) |
| 67 | 46, 66 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ((∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ 𝑡 = 0) → 𝑍 = 𝑈)) |
| 68 | 67 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) → (𝑡 = 0 → 𝑍 = 𝑈)) |
| 69 | 35, 68 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) → (𝑡 = 0 → 𝑍 = 𝑈)) |
| 70 | 69 | necon3d 2815 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) → (𝑍 ≠ 𝑈 → 𝑡 ≠ 0)) |
| 71 | 33, 70 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) → 𝑡 ≠ 0) |
| 72 | | simp1l 1085 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
| 73 | | simp2l 1087 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → 𝑍 ∈ (𝔼‘𝑁)) |
| 74 | 72, 73, 53 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) |
| 75 | | simp2l 1087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑡 ∈ (0[,]1)) |
| 76 | | 0re 10040 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 ∈
ℝ |
| 77 | | 1re 10039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 1 ∈
ℝ |
| 78 | 76, 77 | elicc2i 12239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤
𝑡 ∧ 𝑡 ≤ 1)) |
| 79 | 78 | simp1bi 1076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 ∈ (0[,]1) → 𝑡 ∈
ℝ) |
| 80 | 75, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℝ) |
| 81 | | simp2r 1088 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑠 ∈ (0[,]1)) |
| 82 | 76, 77 | elicc2i 12239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 ∈ (0[,]1) ↔ (𝑠 ∈ ℝ ∧ 0 ≤
𝑠 ∧ 𝑠 ≤ 1)) |
| 83 | 82 | simp1bi 1076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑠 ∈ (0[,]1) → 𝑠 ∈
ℝ) |
| 84 | 81, 83 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑠 ∈ ℝ) |
| 85 | 80, 84 | letrid 10189 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → (𝑡 ≤ 𝑠 ∨ 𝑠 ≤ 𝑡)) |
| 86 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 𝑡 ≤ 𝑠) |
| 87 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 𝑡 ∈ ℝ) |
| 88 | 78 | simp2bi 1077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑡 ∈ (0[,]1) → 0 ≤
𝑡) |
| 89 | 75, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 0 ≤ 𝑡) |
| 90 | 89 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 0 ≤ 𝑡) |
| 91 | 84 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 𝑠 ∈ ℝ) |
| 92 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 0 ∈ ℝ) |
| 93 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑡 ≠ 0) |
| 94 | 80, 89, 93 | ne0gt0d 10174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 0 < 𝑡) |
| 95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 0 < 𝑡) |
| 96 | 92, 87, 91, 95, 86 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → 0 < 𝑠) |
| 97 | | divelunit 12314 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑡 ∈ ℝ ∧ 0 ≤
𝑡) ∧ (𝑠 ∈ ℝ ∧ 0 <
𝑠)) → ((𝑡 / 𝑠) ∈ (0[,]1) ↔ 𝑡 ≤ 𝑠)) |
| 98 | 87, 90, 91, 96, 97 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → ((𝑡 / 𝑠) ∈ (0[,]1) ↔ 𝑡 ≤ 𝑠)) |
| 99 | 86, 98 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → (𝑡 / 𝑠) ∈ (0[,]1)) |
| 100 | | simp12 1092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑍 ∈ (𝔼‘𝑁)) |
| 101 | 100 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑍 ∈ (𝔼‘𝑁)) |
| 102 | 101, 51 | sylancom 701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 103 | | simp13 1093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑏 ∈ (𝔼‘𝑁)) |
| 104 | 103 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑏 ∈ (𝔼‘𝑁)) |
| 105 | 104, 55 | sylancom 701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → (𝑏‘𝑖) ∈ ℂ) |
| 106 | 79 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑡 ∈ (0[,]1) → 𝑡 ∈
ℂ) |
| 107 | 75, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℂ) |
| 108 | 107 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ) |
| 109 | 83 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑠 ∈ (0[,]1) → 𝑠 ∈
ℂ) |
| 110 | 81, 109 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 𝑠 ∈ ℂ) |
| 111 | 110 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ) |
| 112 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 0 ∈ ℝ) |
| 113 | 80 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℝ) |
| 114 | 84 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℝ) |
| 115 | 89 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ 𝑡) |
| 116 | | simpll3 1102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ≠ 0) |
| 117 | 113, 115,
116 | ne0gt0d 10174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 0 < 𝑡) |
| 118 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ≤ 𝑠) |
| 119 | 112, 113,
114, 117, 118 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 0 < 𝑠) |
| 120 | 119 | gt0ne0d 10592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ≠ 0) |
| 121 | | divcl 10691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → (𝑡 / 𝑠) ∈ ℂ) |
| 122 | 121 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (𝑡 / 𝑠) ∈ ℂ) |
| 123 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ 1 ∈
ℂ |
| 124 | | simpr2 1068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → 𝑠 ∈ ℂ) |
| 125 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((1
∈ ℂ ∧ 𝑠
∈ ℂ) → (1 − 𝑠) ∈ ℂ) |
| 126 | 123, 124,
125 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (1 − 𝑠) ∈
ℂ) |
| 127 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (𝑍‘𝑖) ∈ ℂ) |
| 128 | 126, 127 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((1 − 𝑠) · (𝑍‘𝑖)) ∈ ℂ) |
| 129 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (𝑏‘𝑖) ∈ ℂ) |
| 130 | 124, 129 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (𝑠 · (𝑏‘𝑖)) ∈ ℂ) |
| 131 | 122, 128,
130 | adddid 10064 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) = (((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖))) + ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖))))) |
| 132 | 131 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + (((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖))) + ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖)))))) |
| 133 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((1
∈ ℂ ∧ (𝑡 /
𝑠) ∈ ℂ) →
(1 − (𝑡 / 𝑠)) ∈
ℂ) |
| 134 | 123, 122,
133 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (1 − (𝑡 / 𝑠)) ∈ ℂ) |
| 135 | 134, 127 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) ∈ ℂ) |
| 136 | 122, 128 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖))) ∈ ℂ) |
| 137 | 122, 130 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖))) ∈ ℂ) |
| 138 | 135, 136,
137 | addassd 10062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖)))) + ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖)))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + (((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖))) + ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖)))))) |
| 139 | 122, 126 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((𝑡 / 𝑠) · (1 − 𝑠)) ∈ ℂ) |
| 140 | 134, 139,
127 | adddird 10065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((1 − (𝑡 / 𝑠)) + ((𝑡 / 𝑠) · (1 − 𝑠))) · (𝑍‘𝑖)) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + (((𝑡 / 𝑠) · (1 − 𝑠)) · (𝑍‘𝑖)))) |
| 141 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → 𝑠 ∈
ℂ) |
| 142 | | subdi 10463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑡 / 𝑠) ∈ ℂ ∧ 1 ∈ ℂ ∧
𝑠 ∈ ℂ) →
((𝑡 / 𝑠) · (1 − 𝑠)) = (((𝑡 / 𝑠) · 1) − ((𝑡 / 𝑠) · 𝑠))) |
| 143 | 123, 142 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝑡 / 𝑠) ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑡 / 𝑠) · (1 − 𝑠)) = (((𝑡 / 𝑠) · 1) − ((𝑡 / 𝑠) · 𝑠))) |
| 144 | 121, 141,
143 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((𝑡 / 𝑠) · (1 − 𝑠)) = (((𝑡 / 𝑠) · 1) − ((𝑡 / 𝑠) · 𝑠))) |
| 145 | 121 | mulid1d 10057 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((𝑡 / 𝑠) · 1) = (𝑡 / 𝑠)) |
| 146 | | divcan1 10694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((𝑡 / 𝑠) · 𝑠) = 𝑡) |
| 147 | 145, 146 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → (((𝑡 / 𝑠) · 1) − ((𝑡 / 𝑠) · 𝑠)) = ((𝑡 / 𝑠) − 𝑡)) |
| 148 | 144, 147 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((𝑡 / 𝑠) · (1 − 𝑠)) = ((𝑡 / 𝑠) − 𝑡)) |
| 149 | 148 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((1 −
(𝑡 / 𝑠)) + ((𝑡 / 𝑠) · (1 − 𝑠))) = ((1 − (𝑡 / 𝑠)) + ((𝑡 / 𝑠) − 𝑡))) |
| 150 | | simp1 1061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → 𝑡 ∈
ℂ) |
| 151 | | npncan 10302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((1
∈ ℂ ∧ (𝑡 /
𝑠) ∈ ℂ ∧
𝑡 ∈ ℂ) →
((1 − (𝑡 / 𝑠)) + ((𝑡 / 𝑠) − 𝑡)) = (1 − 𝑡)) |
| 152 | 123, 151 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑡 / 𝑠) ∈ ℂ ∧ 𝑡 ∈ ℂ) → ((1 − (𝑡 / 𝑠)) + ((𝑡 / 𝑠) − 𝑡)) = (1 − 𝑡)) |
| 153 | 121, 150,
152 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((1 −
(𝑡 / 𝑠)) + ((𝑡 / 𝑠) − 𝑡)) = (1 − 𝑡)) |
| 154 | 149, 153 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0) → ((1 −
(𝑡 / 𝑠)) + ((𝑡 / 𝑠) · (1 − 𝑠))) = (1 − 𝑡)) |
| 155 | 154 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((1 − (𝑡 / 𝑠)) + ((𝑡 / 𝑠) · (1 − 𝑠))) = (1 − 𝑡)) |
| 156 | 155 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((1 − (𝑡 / 𝑠)) + ((𝑡 / 𝑠) · (1 − 𝑠))) · (𝑍‘𝑖)) = ((1 − 𝑡) · (𝑍‘𝑖))) |
| 157 | 122, 126,
127 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((𝑡 / 𝑠) · (1 − 𝑠)) · (𝑍‘𝑖)) = ((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖)))) |
| 158 | 157 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + (((𝑡 / 𝑠) · (1 − 𝑠)) · (𝑍‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖))))) |
| 159 | 140, 156,
158 | 3eqtr3rd 2665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖)))) = ((1 − 𝑡) · (𝑍‘𝑖))) |
| 160 | 122, 124,
129 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((𝑡 / 𝑠) · 𝑠) · (𝑏‘𝑖)) = ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖)))) |
| 161 | 146 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((𝑡 / 𝑠) · 𝑠) = 𝑡) |
| 162 | 161 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((𝑡 / 𝑠) · 𝑠) · (𝑏‘𝑖)) = (𝑡 · (𝑏‘𝑖))) |
| 163 | 160, 162 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖))) = (𝑡 · (𝑏‘𝑖))) |
| 164 | 159, 163 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → ((((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · ((1 − 𝑠) · (𝑍‘𝑖)))) + ((𝑡 / 𝑠) · (𝑠 · (𝑏‘𝑖)))) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) |
| 165 | 132, 138,
164 | 3eqtr2rd 2663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑡 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ 𝑠 ≠ 0)) → (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 166 | 102, 105,
108, 111, 120, 165 | syl23anc 1333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 167 | 166 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 168 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑟 = (𝑡 / 𝑠) → (1 − 𝑟) = (1 − (𝑡 / 𝑠))) |
| 169 | 168 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑟 = (𝑡 / 𝑠) → ((1 − 𝑟) · (𝑍‘𝑖)) = ((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖))) |
| 170 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑟 = (𝑡 / 𝑠) → (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) = ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 171 | 169, 170 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑟 = (𝑡 / 𝑠) → (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 172 | 171 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑟 = (𝑡 / 𝑠) → ((((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ↔ (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 173 | 172 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑟 = (𝑡 / 𝑠) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 174 | 173 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑡 / 𝑠) ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − (𝑡 / 𝑠)) · (𝑍‘𝑖)) + ((𝑡 / 𝑠) · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) → ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 175 | 99, 167, 174 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑡 ≤ 𝑠) → ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 176 | 175 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → (𝑡 ≤ 𝑠 → ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 177 | 82 | simp2bi 1077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑠 ∈ (0[,]1) → 0 ≤
𝑠) |
| 178 | 81, 177 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → 0 ≤ 𝑠) |
| 179 | | divelunit 12314 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑠 ∈ ℝ ∧ 0 ≤
𝑠) ∧ (𝑡 ∈ ℝ ∧ 0 <
𝑡)) → ((𝑠 / 𝑡) ∈ (0[,]1) ↔ 𝑠 ≤ 𝑡)) |
| 180 | 84, 178, 80, 94, 179 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → ((𝑠 / 𝑡) ∈ (0[,]1) ↔ 𝑠 ≤ 𝑡)) |
| 181 | 180 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡) → (𝑠 / 𝑡) ∈ (0[,]1)) |
| 182 | | simp112 1191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑍 ∈ (𝔼‘𝑁)) |
| 183 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) |
| 184 | 182, 183,
51 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 185 | | simp113 1192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑏 ∈ (𝔼‘𝑁)) |
| 186 | 185, 183,
55 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → (𝑏‘𝑖) ∈ ℂ) |
| 187 | | simp12r 1175 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ (0[,]1)) |
| 188 | 187, 109 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ) |
| 189 | | simp12l 1174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1)) |
| 190 | 189, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ) |
| 191 | | simp13 1093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ≠ 0) |
| 192 | | divcl 10691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (𝑠 / 𝑡) ∈ ℂ) |
| 193 | 192 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (𝑠 / 𝑡) ∈ ℂ) |
| 194 | | simpr2 1068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → 𝑡 ∈ ℂ) |
| 195 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((1
∈ ℂ ∧ 𝑡
∈ ℂ) → (1 − 𝑡) ∈ ℂ) |
| 196 | 123, 194,
195 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (1 − 𝑡) ∈
ℂ) |
| 197 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (𝑍‘𝑖) ∈ ℂ) |
| 198 | 196, 197 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((1 − 𝑡) · (𝑍‘𝑖)) ∈ ℂ) |
| 199 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (𝑏‘𝑖) ∈ ℂ) |
| 200 | 194, 199 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (𝑡 · (𝑏‘𝑖)) ∈ ℂ) |
| 201 | 193, 198,
200 | adddid 10064 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) = (((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖))) + ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖))))) |
| 202 | 201 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + (((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖))) + ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖)))))) |
| 203 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((1
∈ ℂ ∧ (𝑠 /
𝑡) ∈ ℂ) →
(1 − (𝑠 / 𝑡)) ∈
ℂ) |
| 204 | 123, 193,
203 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (1 − (𝑠 / 𝑡)) ∈ ℂ) |
| 205 | 204, 197 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) ∈ ℂ) |
| 206 | 193, 198 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖))) ∈ ℂ) |
| 207 | 193, 200 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖))) ∈ ℂ) |
| 208 | 205, 206,
207 | addassd 10062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖)))) + ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖)))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + (((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖))) + ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖)))))) |
| 209 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → 𝑡 ∈
ℂ) |
| 210 | | subdi 10463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑠 / 𝑡) ∈ ℂ ∧ 1 ∈ ℂ ∧
𝑡 ∈ ℂ) →
((𝑠 / 𝑡) · (1 − 𝑡)) = (((𝑠 / 𝑡) · 1) − ((𝑠 / 𝑡) · 𝑡))) |
| 211 | 123, 210 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑠 / 𝑡) ∈ ℂ ∧ 𝑡 ∈ ℂ) → ((𝑠 / 𝑡) · (1 − 𝑡)) = (((𝑠 / 𝑡) · 1) − ((𝑠 / 𝑡) · 𝑡))) |
| 212 | 192, 209,
211 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((𝑠 / 𝑡) · (1 − 𝑡)) = (((𝑠 / 𝑡) · 1) − ((𝑠 / 𝑡) · 𝑡))) |
| 213 | 192 | mulid1d 10057 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((𝑠 / 𝑡) · 1) = (𝑠 / 𝑡)) |
| 214 | | divcan1 10694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((𝑠 / 𝑡) · 𝑡) = 𝑠) |
| 215 | 213, 214 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (((𝑠 / 𝑡) · 1) − ((𝑠 / 𝑡) · 𝑡)) = ((𝑠 / 𝑡) − 𝑠)) |
| 216 | 212, 215 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((𝑠 / 𝑡) · (1 − 𝑡)) = ((𝑠 / 𝑡) − 𝑠)) |
| 217 | 216 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((1 −
(𝑠 / 𝑡)) + ((𝑠 / 𝑡) · (1 − 𝑡))) = ((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) − 𝑠))) |
| 218 | | simp1 1061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → 𝑠 ∈
ℂ) |
| 219 | | npncan 10302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((1
∈ ℂ ∧ (𝑠 /
𝑡) ∈ ℂ ∧
𝑠 ∈ ℂ) →
((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) − 𝑠)) = (1 − 𝑠)) |
| 220 | 123, 219 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑠 / 𝑡) ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) − 𝑠)) = (1 − 𝑠)) |
| 221 | 192, 218,
220 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((1 −
(𝑠 / 𝑡)) + ((𝑠 / 𝑡) − 𝑠)) = (1 − 𝑠)) |
| 222 | 217, 221 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (1 − 𝑠) = ((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) · (1 − 𝑡)))) |
| 223 | 222 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → ((1 −
𝑠) · (𝑍‘𝑖)) = (((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) · (1 − 𝑡))) · (𝑍‘𝑖))) |
| 224 | 223 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((1 − 𝑠) · (𝑍‘𝑖)) = (((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) · (1 − 𝑡))) · (𝑍‘𝑖))) |
| 225 | 193, 196 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((𝑠 / 𝑡) · (1 − 𝑡)) ∈ ℂ) |
| 226 | 204, 225,
197 | adddird 10065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((1 − (𝑠 / 𝑡)) + ((𝑠 / 𝑡) · (1 − 𝑡))) · (𝑍‘𝑖)) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + (((𝑠 / 𝑡) · (1 − 𝑡)) · (𝑍‘𝑖)))) |
| 227 | 193, 196,
197 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((𝑠 / 𝑡) · (1 − 𝑡)) · (𝑍‘𝑖)) = ((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖)))) |
| 228 | 227 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + (((𝑠 / 𝑡) · (1 − 𝑡)) · (𝑍‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖))))) |
| 229 | 224, 226,
228 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖)))) = ((1 − 𝑠) · (𝑍‘𝑖))) |
| 230 | 193, 194,
199 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((𝑠 / 𝑡) · 𝑡) · (𝑏‘𝑖)) = ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖)))) |
| 231 | 214 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (((𝑠 / 𝑡) · 𝑡) · (𝑏‘𝑖)) = (𝑠 · (𝑏‘𝑖))) |
| 232 | 231 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((𝑠 / 𝑡) · 𝑡) · (𝑏‘𝑖)) = (𝑠 · (𝑏‘𝑖))) |
| 233 | 230, 232 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖))) = (𝑠 · (𝑏‘𝑖))) |
| 234 | 229, 233 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → ((((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · ((1 − 𝑡) · (𝑍‘𝑖)))) + ((𝑠 / 𝑡) · (𝑡 · (𝑏‘𝑖)))) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) |
| 235 | 202, 208,
234 | 3eqtr2rd 2663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑍‘𝑖) ∈ ℂ ∧ (𝑏‘𝑖) ∈ ℂ) ∧ (𝑠 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ 𝑡 ≠ 0)) → (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 236 | 184, 186,
188, 190, 191, 235 | syl23anc 1333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡 ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 237 | 236 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑡 ∈ (0[,]1) ∧
𝑠 ∈ (0[,]1)) ∧
𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 238 | 237 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 239 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑟 = (𝑠 / 𝑡) → (1 − 𝑟) = (1 − (𝑠 / 𝑡))) |
| 240 | 239 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑟 = (𝑠 / 𝑡) → ((1 − 𝑟) · (𝑍‘𝑖)) = ((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖))) |
| 241 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑟 = (𝑠 / 𝑡) → (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) = ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) |
| 242 | 240, 241 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑟 = (𝑠 / 𝑡) → (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 243 | 242 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑟 = (𝑠 / 𝑡) → ((((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) ↔ (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 244 | 243 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑟 = (𝑠 / 𝑡) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 245 | 244 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑠 / 𝑡) ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − (𝑠 / 𝑡)) · (𝑍‘𝑖)) + ((𝑠 / 𝑡) · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) → ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 246 | 181, 238,
245 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) ∧ 𝑠 ≤ 𝑡) → ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 247 | 246 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → (𝑠 ≤ 𝑡 → ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 248 | 176, 247 | orim12d 883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → ((𝑡 ≤ 𝑠 ∨ 𝑠 ≤ 𝑡) → (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))))) |
| 249 | | r19.43 3093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑟 ∈
(0[,]1)(∀𝑖 ∈
(1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 250 | 248, 249 | syl6ibr 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → ((𝑡 ≤ 𝑠 ∨ 𝑠 ≤ 𝑡) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))))) |
| 251 | 85, 250 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 252 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) → (𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))) |
| 253 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) → (𝑟 · (𝑝‘𝑖)) = (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 254 | 253 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) → (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 255 | 252, 254 | eqeqan12d 2638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ((𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ↔ (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 256 | 255 | ralimi 2952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ↔ (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 257 | | ralbi 3068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ↔ (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) → (∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 258 | 256, 257 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → (∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))))) |
| 259 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) → (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) |
| 260 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) → (𝑟 · (𝑈‘𝑖)) = (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) |
| 261 | 260 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) → (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) |
| 262 | 259, 261 | eqeqan12rd 2640 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ((𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))) ↔ (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 263 | 262 | ralimi 2952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)((𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))) ↔ (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 264 | | ralbi 3068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑖 ∈
(1...𝑁)((𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))) ↔ (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 265 | 263, 264 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))))) |
| 266 | 258, 265 | orbi12d 746 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ((∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))))) |
| 267 | 266 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → (∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) ∨ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖)))))))) |
| 268 | 251, 267 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑡 ≠ 0) → (∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))))) |
| 269 | 268 | 3expia 1267 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (𝑡 ≠ 0 → (∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))))) |
| 270 | 269 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → (𝑡 ≠ 0 → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))))) |
| 271 | 74, 270 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → (𝑡 ≠ 0 → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))))) |
| 272 | 271 | imp 445 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) → (𝑡 ≠ 0 → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))))) |
| 273 | 71, 272 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑏 ∈
(𝔼‘𝑁)) ∧
(𝑍 ∈
(𝔼‘𝑁) ∧
𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))) |
| 274 | 273 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))))) |
| 275 | 274 | rexlimdvva 3038 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) → ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))))) |
| 276 | | simp3l 1089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → 𝑈 ∈ (𝔼‘𝑁)) |
| 277 | | brbtwn 25779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑈 Btwn 〈𝑍, 𝑏〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) |
| 278 | 276, 73, 53, 277 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → (𝑈 Btwn 〈𝑍, 𝑏〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))))) |
| 279 | | simp3r 1090 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → 𝑝 ∈ (𝔼‘𝑁)) |
| 280 | | brbtwn 25779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑝 Btwn 〈𝑍, 𝑏〉 ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 281 | 279, 73, 53, 280 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → (𝑝 Btwn 〈𝑍, 𝑏〉 ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 282 | 278, 281 | anbi12d 747 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ((𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 283 | | r19.26 3064 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 284 | 283 | 2rexbii 3042 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑡 ∈
(0[,]1)∃𝑠 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 285 | | reeanv 3107 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑡 ∈
(0[,]1)∃𝑠 ∈
(0[,]1)(∀𝑖 ∈
(1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 286 | 284, 285 | bitri 264 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑡 ∈
(0[,]1)∃𝑠 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖))))) |
| 287 | 282, 286 | syl6bbr 278 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ((𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑈‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑏‘𝑖))) ∧ (𝑝‘𝑖) = (((1 − 𝑠) · (𝑍‘𝑖)) + (𝑠 · (𝑏‘𝑖)))))) |
| 288 | | brbtwn 25779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) → (𝑈 Btwn 〈𝑍, 𝑝〉 ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))))) |
| 289 | 276, 73, 279, 288 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → (𝑈 Btwn 〈𝑍, 𝑝〉 ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))))) |
| 290 | | brbtwn 25779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) → (𝑝 Btwn 〈𝑍, 𝑈〉 ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))) |
| 291 | 279, 73, 276, 290 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → (𝑝 Btwn 〈𝑍, 𝑈〉 ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))) |
| 292 | 289, 291 | orbi12d 746 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ((𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))))) |
| 293 | | r19.43 3093 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑟 ∈
(0[,]1)(∀𝑖 ∈
(1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖))))) |
| 294 | 292, 293 | syl6bbr 278 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ((𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉) ↔ ∃𝑟 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑈‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑝‘𝑖))) ∨ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑟) · (𝑍‘𝑖)) + (𝑟 · (𝑈‘𝑖)))))) |
| 295 | 275, 287,
294 | 3imtr4d 283 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈) ∧ (𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁))) → ((𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 296 | 295 | 3expia 1267 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈)) → ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) → ((𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)))) |
| 297 | 296 | impd 447 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈)) → (((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ (𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉)) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 298 | 31, 297 | sylanl2 683 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑍 ≠ 𝑈)) → (((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ (𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉)) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 299 | 298 | 3adantr2 1221 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → (((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ (𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉)) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 300 | 299 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → (((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ (𝑈 Btwn 〈𝑍, 𝑏〉 ∧ 𝑝 Btwn 〈𝑍, 𝑏〉)) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 301 | 30, 300 | mpd 15 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) ∧ 𝑝 ∈ 𝐴) → (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)) |
| 302 | 301 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)) |
| 303 | 302 | 3exp2 1285 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 𝑥 Btwn 〈𝑍, 𝑏〉)) → (𝑍 ∈ (𝔼‘𝑁) → (𝑈 ∈ 𝐴 → (𝑍 ≠ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))))) |
| 304 | 11, 303 | syl6 35 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 → ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) → (𝑍 ∈ (𝔼‘𝑁) → (𝑈 ∈ 𝐴 → (𝑍 ≠ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)))))) |
| 305 | 304 | exlimiv 1858 |
. . . . . 6
⊢
(∃𝑏 𝑏 ∈ 𝐵 → ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) → (𝑍 ∈ (𝔼‘𝑁) → (𝑈 ∈ 𝐴 → (𝑍 ≠ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)))))) |
| 306 | 2, 305 | sylbi 207 |
. . . . 5
⊢ (𝐵 ≠ ∅ → ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) → (𝑍 ∈ (𝔼‘𝑁) → (𝑈 ∈ 𝐴 → (𝑍 ≠ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)))))) |
| 307 | 306 | com4l 92 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) → (𝑍 ∈ (𝔼‘𝑁) → (𝑈 ∈ 𝐴 → (𝐵 ≠ ∅ → (𝑍 ≠ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)))))) |
| 308 | 307 | 3impd 1281 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) → ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) → (𝑍 ≠ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)))) |
| 309 | 308 | imp32 449 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)) |
| 310 | | axcontlem4.1 |
. . . 4
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
| 311 | 310 | sseq2i 3630 |
. . 3
⊢ (𝐴 ⊆ 𝐷 ↔ 𝐴 ⊆ {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)}) |
| 312 | | ssrab 3680 |
. . 3
⊢ (𝐴 ⊆ {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ↔ (𝐴 ⊆ (𝔼‘𝑁) ∧ ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 313 | 311, 312 | bitri 264 |
. 2
⊢ (𝐴 ⊆ 𝐷 ↔ (𝐴 ⊆ (𝔼‘𝑁) ∧ ∀𝑝 ∈ 𝐴 (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉))) |
| 314 | 1, 309, 313 | sylanbrc 698 |
1
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ 𝐷) |