MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cyclusnfrgr Structured version   Visualization version   GIF version

Theorem 4cyclusnfrgr 27156
Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
4cyclusnfrgr.v 𝑉 = (Vtx‘𝐺)
4cyclusnfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
4cyclusnfrgr ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))

Proof of Theorem 4cyclusnfrgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 794 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2 simprr 796 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))
3 simpl3 1066 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (𝐵𝑉𝐷𝑉𝐵𝐷))
4 4cycl2vnunb 27154 . . . . . 6 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
51, 2, 3, 4syl3anc 1326 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
6 4cyclusnfrgr.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
7 4cyclusnfrgr.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
86, 7frcond1 27130 . . . . . . . . 9 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸))
9 pm2.24 121 . . . . . . . . 9 (∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ))
108, 9syl6com 37 . . . . . . . 8 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (𝐺 ∈ FriendGraph → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph )))
11103ad2ant2 1083 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → (𝐺 ∈ FriendGraph → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph )))
1211com23 86 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph )))
1312adantr 481 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph )))
145, 13mpd 15 . . . 4 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ))
1514pm2.01d 181 . . 3 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ¬ 𝐺 ∈ FriendGraph )
16 df-nel 2898 . . 3 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1715, 16sylibr 224 . 2 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → 𝐺 ∉ FriendGraph )
1817ex 450 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wnel 2897  ∃!wreu 2914  wss 3574  {cpr 4179  cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-frgr 27121
This theorem is referenced by:  frgrnbnb  27157  frgrwopreg  27187
  Copyright terms: Public domain W3C validator