Proof of Theorem frgrnbnb
Step | Hyp | Ref
| Expression |
1 | | frgrusgr 27124 |
. . 3
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph
) |
2 | | frgrnbnb.n |
. . . . . . . . . 10
⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
3 | 2 | eleq2i 2693 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝐷 ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑋)) |
4 | | frgrnbnb.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
5 | 4 | nbusgreledg 26249 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑈, 𝑋} ∈ 𝐸)) |
6 | 5 | biimpd 219 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → {𝑈, 𝑋} ∈ 𝐸)) |
7 | 3, 6 | syl5bi 232 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (𝑈 ∈ 𝐷 → {𝑈, 𝑋} ∈ 𝐸)) |
8 | 2 | eleq2i 2693 |
. . . . . . . . 9
⊢ (𝑊 ∈ 𝐷 ↔ 𝑊 ∈ (𝐺 NeighbVtx 𝑋)) |
9 | 4 | nbusgreledg 26249 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑊, 𝑋} ∈ 𝐸)) |
10 | 9 | biimpd 219 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → {𝑊, 𝑋} ∈ 𝐸)) |
11 | 8, 10 | syl5bi 232 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (𝑊 ∈ 𝐷 → {𝑊, 𝑋} ∈ 𝐸)) |
12 | 7, 11 | anim12d 586 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ((𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸))) |
13 | 12 | imp 445 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) |
14 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
15 | 14 | nbgrisvtx 26255 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑈 ∈ (Vtx‘𝐺)) |
16 | 15 | ex 450 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑈 ∈ (Vtx‘𝐺))) |
17 | 3, 16 | syl5bi 232 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (𝑈 ∈ 𝐷 → 𝑈 ∈ (Vtx‘𝐺))) |
18 | 14 | nbgrisvtx 26255 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑊 ∈ (Vtx‘𝐺)) |
19 | 18 | ex 450 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → 𝑊 ∈ (Vtx‘𝐺))) |
20 | 8, 19 | syl5bi 232 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (𝑊 ∈ 𝐷 → 𝑊 ∈ (Vtx‘𝐺))) |
21 | 17, 20 | anim12d 586 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ((𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) |
22 | 21 | imp 445 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) |
23 | 4, 14 | usgrpredgv 26089 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USGraph ∧ {𝑈, 𝐴} ∈ 𝐸) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))) |
24 | 23 | ad2ant2r 783 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))) |
25 | | ax-1 6 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 = 𝑋 → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)) |
26 | 25 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 = 𝑋 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))) |
27 | 26 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 = 𝑋 → (𝑈 ≠ 𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))) |
28 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝐺 ∈ USGraph ) |
29 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑊 ∈ (Vtx‘𝐺)) |
30 | 29 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝑊 ∈ (Vtx‘𝐺)) |
31 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑈 ∈ (Vtx‘𝐺)) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝑈 ∈ (Vtx‘𝐺)) |
33 | | necom 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑈 ≠ 𝑊 ↔ 𝑊 ≠ 𝑈) |
34 | 33 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑈 ≠ 𝑊 → 𝑊 ≠ 𝑈) |
35 | 34 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → 𝑊 ≠ 𝑈) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝑊 ≠ 𝑈) |
37 | 30, 32, 36 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ≠ 𝑈)) |
38 | | simprll 802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑋 ∈ (Vtx‘𝐺)) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝑋 ∈ (Vtx‘𝐺)) |
40 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝐴 ∈ (Vtx‘𝐺)) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝐴 ∈ (Vtx‘𝐺)) |
42 | | necom 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝐴 ≠ 𝑋 ↔ 𝑋 ≠ 𝐴) |
43 | 42 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝐴 ≠ 𝑋 → 𝑋 ≠ 𝐴) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → 𝑋 ≠ 𝐴) |
45 | 44 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝑋 ≠ 𝐴) |
46 | 39, 41, 45 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋 ≠ 𝐴)) |
47 | 28, 37, 46 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ≠ 𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋 ≠ 𝐴))) |
48 | 47 | ad4ant14 1293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝐺 ∈
USGraph ∧ ((𝑋 ∈
(Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ≠ 𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋 ≠ 𝐴))) |
49 | | prcom 4267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ {𝑈, 𝑋} = {𝑋, 𝑈} |
50 | 49 | eleq1i 2692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ({𝑈, 𝑋} ∈ 𝐸 ↔ {𝑋, 𝑈} ∈ 𝐸) |
51 | 50 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ({𝑈, 𝑋} ∈ 𝐸 → {𝑋, 𝑈} ∈ 𝐸) |
52 | 51 | anim1i 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ({𝑋, 𝑈} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) |
53 | 52 | ancomd 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸)) |
54 | 53 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸)) |
55 | | prcom 4267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ {𝑊, 𝐴} = {𝐴, 𝑊} |
56 | 55 | eleq1i 2692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ({𝑊, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝑊} ∈ 𝐸) |
57 | 56 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ({𝑊, 𝐴} ∈ 𝐸 → {𝐴, 𝑊} ∈ 𝐸) |
58 | 57 | anim2i 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)) |
59 | 54, 58 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸))) |
60 | 59 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝐺 ∈
USGraph ∧ ((𝑋 ∈
(Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸))) |
61 | 14, 4 | 4cyclusnfrgr 27156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ≠ 𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋 ≠ 𝐴)) → ((({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)) → 𝐺 ∉ FriendGraph )) |
62 | 48, 60, 61 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝐺 ∈
USGraph ∧ ((𝑋 ∈
(Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → 𝐺 ∉ FriendGraph ) |
63 | | df-nel 2898 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐺 ∉ FriendGraph ↔
¬ 𝐺 ∈ FriendGraph
) |
64 | 62, 63 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐺 ∈
USGraph ∧ ((𝑋 ∈
(Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → ¬ 𝐺 ∈ FriendGraph ) |
65 | 64 | pm2.21d 118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐺 ∈
USGraph ∧ ((𝑋 ∈
(Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)) |
66 | 65 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))) |
67 | 66 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → 𝐴 = 𝑋))) |
68 | 67 | exp41 638 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐺 ∈ USGraph → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → 𝐴 = 𝑋)))))) |
69 | 68 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph →
(({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → 𝐴 = 𝑋)))))) |
70 | 1, 69 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺 ∈ FriendGraph →
(({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → 𝐴 = 𝑋))))) |
71 | 70 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ≠ 𝑋 ∧ 𝑈 ≠ 𝑊) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))) |
72 | 71 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ≠ 𝑋 → (𝑈 ≠ 𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))) |
73 | 27, 72 | pm2.61ine 2877 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈 ≠ 𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))) |
74 | 73 | imp 445 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))) |
75 | 74 | com13 88 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))) |
76 | 75 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))) |
77 | 76 | com25 99 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))) |
78 | 77 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ (Vtx‘𝐺) → (𝐴 ∈ (Vtx‘𝐺) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))) |
79 | | nbgrcl 26233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
80 | 79, 2 | eleq2s 2719 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ 𝐷 → 𝑋 ∈ (Vtx‘𝐺)) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) → 𝑋 ∈ (Vtx‘𝐺)) |
82 | 81 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → 𝑋 ∈ (Vtx‘𝐺)) |
83 | 78, 82 | syl11 33 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))) |
84 | 83 | com34 91 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))) |
85 | 84 | impd 447 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))) |
86 | 85 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))) |
87 | 24, 86 | mpcom 38 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))) |
88 | 87 | ex 450 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))) |
89 | 88 | com25 99 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))) |
90 | 89 | com14 96 |
. . . . . . . 8
⊢ ((𝑈 ≠ 𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))) |
91 | 90 | ex 450 |
. . . . . . 7
⊢ (𝑈 ≠ 𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))) |
92 | 91 | com15 101 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (𝑈 ≠ 𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))) |
93 | 13, 22, 92 | mp2d 49 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷)) → (𝐺 ∈ FriendGraph → (𝑈 ≠ 𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))) |
94 | 93 | ex 450 |
. . . 4
⊢ (𝐺 ∈ USGraph → ((𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) → (𝐺 ∈ FriendGraph → (𝑈 ≠ 𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))) |
95 | 94 | com23 86 |
. . 3
⊢ (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph →
((𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) → (𝑈 ≠ 𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))) |
96 | 1, 95 | mpcom 38 |
. 2
⊢ (𝐺 ∈ FriendGraph →
((𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) → (𝑈 ≠ 𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))) |
97 | 96 | 3imp 1256 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) ∧ 𝑈 ≠ 𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)) |