MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cyclusnfrgr Structured version   Visualization version   Unicode version

Theorem 4cyclusnfrgr 27156
Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
4cyclusnfrgr.v  |-  V  =  (Vtx `  G )
4cyclusnfrgr.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
4cyclusnfrgr  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  (
( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
)  ->  G  e/ FriendGraph  ) )

Proof of Theorem 4cyclusnfrgr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simprl 794 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) )
2 simprr 796 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E
) )
3 simpl3 1066 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D ) )
4 4cycl2vnunb 27154 . . . . . 6  |-  ( ( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E )
51, 2, 3, 4syl3anc 1326 . . . . 5  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E )
6 4cyclusnfrgr.v . . . . . . . . . 10  |-  V  =  (Vtx `  G )
7 4cyclusnfrgr.e . . . . . . . . . 10  |-  E  =  (Edg `  G )
86, 7frcond1 27130 . . . . . . . . 9  |-  ( G  e. FriendGraph  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/= 
C )  ->  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E ) )
9 pm2.24 121 . . . . . . . . 9  |-  ( E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E  -> 
( -.  E! x  e.  V  { { A ,  x } ,  {
x ,  C } }  C_  E  ->  -.  G  e. FriendGraph  ) )
108, 9syl6com 37 . . . . . . . 8  |-  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  -> 
( G  e. FriendGraph  ->  ( -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E  ->  -.  G  e. FriendGraph  ) ) )
11103ad2ant2 1083 . . . . . . 7  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  ( G  e. FriendGraph  ->  ( -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E  ->  -.  G  e. FriendGraph  ) ) )
1211com23 86 . . . . . 6  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  ( -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E  ->  ( G  e. FriendGraph  ->  -.  G  e. FriendGraph  ) ) )
1312adantr 481 . . . . 5  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  ( -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  E  ->  ( G  e. FriendGraph  ->  -.  G  e. FriendGraph  ) ) )
145, 13mpd 15 . . . 4  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  ( G  e. FriendGraph  ->  -.  G  e. FriendGraph  ) )
1514pm2.01d 181 . . 3  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  -.  G  e. FriendGraph  )
16 df-nel 2898 . . 3  |-  ( G  e/ FriendGraph 
<->  -.  G  e. FriendGraph  )
1715, 16sylibr 224 . 2  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  /\  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
) )  ->  G  e/ FriendGraph  )
1817ex 450 1  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  (
( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  /\  ( { C ,  D }  e.  E  /\  { D ,  A }  e.  E )
)  ->  G  e/ FriendGraph  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   E!wreu 2914    C_ wss 3574   {cpr 4179   ` cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-frgr 27121
This theorem is referenced by:  frgrnbnb  27157  frgrwopreg  27187
  Copyright terms: Public domain W3C validator