Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpeld Structured version   Visualization version   GIF version

Theorem abfmpeld 29454
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
Hypotheses
Ref Expression
abfmpeld.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜓})
abfmpeld.2 (𝜑 → {𝑦𝜓} ∈ V)
abfmpeld.3 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))
Assertion
Ref Expression
abfmpeld (𝜑 → ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜒)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑊(𝑥)

Proof of Theorem abfmpeld
StepHypRef Expression
1 abfmpeld.2 . . . . . . . . . 10 (𝜑 → {𝑦𝜓} ∈ V)
21alrimiv 1855 . . . . . . . . 9 (𝜑 → ∀𝑥{𝑦𝜓} ∈ V)
3 csbexg 4792 . . . . . . . . 9 (∀𝑥{𝑦𝜓} ∈ V → 𝐴 / 𝑥{𝑦𝜓} ∈ V)
42, 3syl 17 . . . . . . . 8 (𝜑𝐴 / 𝑥{𝑦𝜓} ∈ V)
5 abfmpeld.1 . . . . . . . . 9 𝐹 = (𝑥𝑉 ↦ {𝑦𝜓})
65fvmpts 6285 . . . . . . . 8 ((𝐴𝑉𝐴 / 𝑥{𝑦𝜓} ∈ V) → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜓})
74, 6sylan2 491 . . . . . . 7 ((𝐴𝑉𝜑) → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜓})
8 csbab 4008 . . . . . . 7 𝐴 / 𝑥{𝑦𝜓} = {𝑦[𝐴 / 𝑥]𝜓}
97, 8syl6eq 2672 . . . . . 6 ((𝐴𝑉𝜑) → (𝐹𝐴) = {𝑦[𝐴 / 𝑥]𝜓})
109eleq2d 2687 . . . . 5 ((𝐴𝑉𝜑) → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜓}))
1110adantl 482 . . . 4 ((𝐵𝑊 ∧ (𝐴𝑉𝜑)) → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜓}))
12 simpll 790 . . . . . . . 8 (((𝐴𝑉𝜑) ∧ 𝑦 = 𝐵) → 𝐴𝑉)
13 abfmpeld.3 . . . . . . . . . . 11 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))
1413ancomsd 470 . . . . . . . . . 10 (𝜑 → ((𝑦 = 𝐵𝑥 = 𝐴) → (𝜓𝜒)))
1514adantl 482 . . . . . . . . 9 ((𝐴𝑉𝜑) → ((𝑦 = 𝐵𝑥 = 𝐴) → (𝜓𝜒)))
1615impl 650 . . . . . . . 8 ((((𝐴𝑉𝜑) ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜓𝜒))
1712, 16sbcied 3472 . . . . . . 7 (((𝐴𝑉𝜑) ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜓𝜒))
1817ex 450 . . . . . 6 ((𝐴𝑉𝜑) → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓𝜒)))
1918alrimiv 1855 . . . . 5 ((𝐴𝑉𝜑) → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓𝜒)))
20 elabgt 3347 . . . . 5 ((𝐵𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓𝜒))) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜓} ↔ 𝜒))
2119, 20sylan2 491 . . . 4 ((𝐵𝑊 ∧ (𝐴𝑉𝜑)) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜓} ↔ 𝜒))
2211, 21bitrd 268 . . 3 ((𝐵𝑊 ∧ (𝐴𝑉𝜑)) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜒))
2322an13s 845 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑊)) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜒))
2423ex 450 1 (𝜑 → ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  [wsbc 3435  csb 3533  cmpt 4729  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator