![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablfaclem1 | Structured version Visualization version GIF version |
Description: Lemma for ablfac 18487. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
Ref | Expression |
---|---|
ablfac.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac.c | ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} |
ablfac.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac.a | ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)} |
ablfac.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) |
ablfac.w | ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) |
Ref | Expression |
---|---|
ablfaclem1 | ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2633 | . . . 4 ⊢ (𝑔 = 𝑈 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑠) = 𝑈)) | |
2 | 1 | anbi2d 740 | . . 3 ⊢ (𝑔 = 𝑈 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))) |
3 | 2 | rabbidv 3189 | . 2 ⊢ (𝑔 = 𝑈 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
4 | ablfac.w | . 2 ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) | |
5 | ablfac.c | . . . . 5 ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} | |
6 | fvex 6201 | . . . . 5 ⊢ (SubGrp‘𝐺) ∈ V | |
7 | 5, 6 | rabex2 4815 | . . . 4 ⊢ 𝐶 ∈ V |
8 | wrdexg 13315 | . . . 4 ⊢ (𝐶 ∈ V → Word 𝐶 ∈ V) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ Word 𝐶 ∈ V |
10 | 9 | rabex 4813 | . 2 ⊢ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)} ∈ V |
11 | 3, 4, 10 | fvmpt 6282 | 1 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ∩ cin 3573 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ran crn 5115 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ↑cexp 12860 #chash 13117 Word cword 13291 ∥ cdvds 14983 ℙcprime 15385 pCnt cpc 15541 Basecbs 15857 ↾s cress 15858 SubGrpcsubg 17588 odcod 17944 pGrp cpgp 17946 Abelcabl 18194 CycGrpccyg 18279 DProd cdprd 18392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-pm 7860 df-neg 10269 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-word 13299 |
This theorem is referenced by: ablfaclem2 18485 ablfaclem3 18486 ablfac 18487 |
Copyright terms: Public domain | W3C validator |