MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem3 Structured version   Visualization version   GIF version

Theorem ablfaclem3 18486
Description: Lemma for ablfac 18487. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
Assertion
Ref Expression
ablfaclem3 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝐴   𝑔,𝑟,𝑠,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠,𝑤,𝑥   𝑊,𝑝,𝑤,𝑥   𝜑,𝑝,𝑠,𝑤,𝑥   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝑂(𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑞 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . 4 (𝜑 → (1...(#‘𝐵)) ∈ Fin)
2 ablfac.a . . . . 5 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)}
3 prmnn 15388 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
433ad2ant2 1083 . . . . . . 7 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (#‘𝐵)) → 𝑤 ∈ ℕ)
5 prmz 15389 . . . . . . . . 9 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
6 ablfac.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
7 ablgrp 18198 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
98grpbn0 17451 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . . . 10 (𝜑𝐵 ≠ ∅)
11 ablfac.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
12 hashnncl 13157 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . . . 10 (𝜑 → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 247 . . . . . . . . 9 (𝜑 → (#‘𝐵) ∈ ℕ)
15 dvdsle 15032 . . . . . . . . 9 ((𝑤 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ) → (𝑤 ∥ (#‘𝐵) → 𝑤 ≤ (#‘𝐵)))
165, 14, 15syl2anr 495 . . . . . . . 8 ((𝜑𝑤 ∈ ℙ) → (𝑤 ∥ (#‘𝐵) → 𝑤 ≤ (#‘𝐵)))
17163impia 1261 . . . . . . 7 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (#‘𝐵)) → 𝑤 ≤ (#‘𝐵))
1814nnzd 11481 . . . . . . . . 9 (𝜑 → (#‘𝐵) ∈ ℤ)
19183ad2ant1 1082 . . . . . . . 8 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (#‘𝐵)) → (#‘𝐵) ∈ ℤ)
20 fznn 12408 . . . . . . . 8 ((#‘𝐵) ∈ ℤ → (𝑤 ∈ (1...(#‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (#‘𝐵))))
2119, 20syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (#‘𝐵)) → (𝑤 ∈ (1...(#‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (#‘𝐵))))
224, 17, 21mpbir2and 957 . . . . . 6 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (#‘𝐵)) → 𝑤 ∈ (1...(#‘𝐵)))
2322rabssdv 3682 . . . . 5 (𝜑 → {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)} ⊆ (1...(#‘𝐵)))
242, 23syl5eqss 3649 . . . 4 (𝜑𝐴 ⊆ (1...(#‘𝐵)))
25 ssfi 8180 . . . 4 (((1...(#‘𝐵)) ∈ Fin ∧ 𝐴 ⊆ (1...(#‘𝐵))) → 𝐴 ∈ Fin)
261, 24, 25syl2anc 693 . . 3 (𝜑𝐴 ∈ Fin)
27 dfin5 3582 . . . . . . . 8 (Word 𝐶 ∩ (𝑊‘(𝑆𝑞))) = {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))}
28 ablfac.o . . . . . . . . . . . . . 14 𝑂 = (od‘𝐺)
29 ablfac.s . . . . . . . . . . . . . 14 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))})
30 ssrab2 3687 . . . . . . . . . . . . . . . 16 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)} ⊆ ℙ
312, 30eqsstri 3635 . . . . . . . . . . . . . . 15 𝐴 ⊆ ℙ
3231a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℙ)
338, 28, 29, 6, 11, 32ablfac1b 18469 . . . . . . . . . . . . 13 (𝜑𝐺dom DProd 𝑆)
34 fvex 6201 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) ∈ V
358, 34eqeltri 2697 . . . . . . . . . . . . . . . 16 𝐵 ∈ V
3635rabex 4813 . . . . . . . . . . . . . . 15 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ V
3736, 29dmmpti 6023 . . . . . . . . . . . . . 14 dom 𝑆 = 𝐴
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom 𝑆 = 𝐴)
3933, 38dprdf2 18406 . . . . . . . . . . . 12 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4039ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
41 ablfac.c . . . . . . . . . . . 12 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
42 ablfac.w . . . . . . . . . . . 12 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
438, 41, 6, 11, 28, 2, 29, 42ablfaclem1 18484 . . . . . . . . . . 11 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑞)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))})
4440, 43syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑊‘(𝑆𝑞)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))})
45 ssrab2 3687 . . . . . . . . . 10 {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))} ⊆ Word 𝐶
4644, 45syl6eqss 3655 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑊‘(𝑆𝑞)) ⊆ Word 𝐶)
47 sseqin2 3817 . . . . . . . . 9 ((𝑊‘(𝑆𝑞)) ⊆ Word 𝐶 ↔ (Word 𝐶 ∩ (𝑊‘(𝑆𝑞))) = (𝑊‘(𝑆𝑞)))
4846, 47sylib 208 . . . . . . . 8 ((𝜑𝑞𝐴) → (Word 𝐶 ∩ (𝑊‘(𝑆𝑞))) = (𝑊‘(𝑆𝑞)))
4927, 48syl5eqr 2670 . . . . . . 7 ((𝜑𝑞𝐴) → {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} = (𝑊‘(𝑆𝑞)))
5049, 44eqtrd 2656 . . . . . 6 ((𝜑𝑞𝐴) → {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))})
51 eqid 2622 . . . . . . . . 9 (Base‘(𝐺s (𝑆𝑞))) = (Base‘(𝐺s (𝑆𝑞)))
52 eqid 2622 . . . . . . . . 9 {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} = {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
536adantr 481 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐺 ∈ Abel)
54 eqid 2622 . . . . . . . . . . 11 (𝐺s (𝑆𝑞)) = (𝐺s (𝑆𝑞))
5554subgabl 18241 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ (𝑆𝑞) ∈ (SubGrp‘𝐺)) → (𝐺s (𝑆𝑞)) ∈ Abel)
5653, 40, 55syl2anc 693 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝐺s (𝑆𝑞)) ∈ Abel)
5732sselda 3603 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
5854subgbas 17598 . . . . . . . . . . . . . 14 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) = (Base‘(𝐺s (𝑆𝑞))))
5940, 58syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) = (Base‘(𝐺s (𝑆𝑞))))
6059fveq2d 6195 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (#‘(𝑆𝑞)) = (#‘(Base‘(𝐺s (𝑆𝑞)))))
618, 28, 29, 6, 11, 32ablfac1a 18468 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (#‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (#‘𝐵))))
6260, 61eqtr3d 2658 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (#‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (#‘𝐵))))
6362oveq2d 6666 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑞 pCnt (#‘(Base‘(𝐺s (𝑆𝑞))))) = (𝑞 pCnt (𝑞↑(𝑞 pCnt (#‘𝐵)))))
6414adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑞𝐴) → (#‘𝐵) ∈ ℕ)
6557, 64pccld 15555 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝑞 pCnt (#‘𝐵)) ∈ ℕ0)
6665nn0zd 11480 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑞 pCnt (#‘𝐵)) ∈ ℤ)
67 pcid 15577 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ (𝑞 pCnt (#‘𝐵)) ∈ ℤ) → (𝑞 pCnt (𝑞↑(𝑞 pCnt (#‘𝐵)))) = (𝑞 pCnt (#‘𝐵)))
6857, 66, 67syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑞 pCnt (𝑞↑(𝑞 pCnt (#‘𝐵)))) = (𝑞 pCnt (#‘𝐵)))
6963, 68eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝑞 pCnt (#‘(Base‘(𝐺s (𝑆𝑞))))) = (𝑞 pCnt (#‘𝐵)))
7069oveq2d 6666 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (#‘(Base‘(𝐺s (𝑆𝑞)))))) = (𝑞↑(𝑞 pCnt (#‘𝐵))))
7162, 70eqtr4d 2659 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (#‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (#‘(Base‘(𝐺s (𝑆𝑞)))))))
7254subggrp 17597 . . . . . . . . . . . 12 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝐺s (𝑆𝑞)) ∈ Grp)
7340, 72syl 17 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺s (𝑆𝑞)) ∈ Grp)
7411adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → 𝐵 ∈ Fin)
758subgss 17595 . . . . . . . . . . . . . 14 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) ⊆ 𝐵)
7640, 75syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ 𝐵)
77 ssfi 8180 . . . . . . . . . . . . 13 ((𝐵 ∈ Fin ∧ (𝑆𝑞) ⊆ 𝐵) → (𝑆𝑞) ∈ Fin)
7874, 76, 77syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ Fin)
7959, 78eqeltrrd 2702 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝑆𝑞))) ∈ Fin)
8051pgpfi2 18021 . . . . . . . . . . 11 (((𝐺s (𝑆𝑞)) ∈ Grp ∧ (Base‘(𝐺s (𝑆𝑞))) ∈ Fin) → (𝑞 pGrp (𝐺s (𝑆𝑞)) ↔ (𝑞 ∈ ℙ ∧ (#‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (#‘(Base‘(𝐺s (𝑆𝑞)))))))))
8173, 79, 80syl2anc 693 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞 pGrp (𝐺s (𝑆𝑞)) ↔ (𝑞 ∈ ℙ ∧ (#‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (#‘(Base‘(𝐺s (𝑆𝑞)))))))))
8257, 71, 81mpbir2and 957 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝑞 pGrp (𝐺s (𝑆𝑞)))
8351, 52, 56, 82, 79pgpfac 18483 . . . . . . . 8 ((𝜑𝑞𝐴) → ∃𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))))
84 ssrab2 3687 . . . . . . . . . . . . . 14 {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ (SubGrp‘(𝐺s (𝑆𝑞)))
85 sswrd 13313 . . . . . . . . . . . . . 14 ({𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ (SubGrp‘(𝐺s (𝑆𝑞))) → Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word (SubGrp‘(𝐺s (𝑆𝑞))))
8684, 85ax-mp 5 . . . . . . . . . . . . 13 Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word (SubGrp‘(𝐺s (𝑆𝑞)))
8786sseli 3599 . . . . . . . . . . . 12 (𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} → 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞))))
8840adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
8988adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
9054subgdmdprd 18433 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → ((𝐺s (𝑆𝑞))dom DProd 𝑠 ↔ (𝐺dom DProd 𝑠 ∧ ran 𝑠 ⊆ 𝒫 (𝑆𝑞))))
9188, 90syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) → ((𝐺s (𝑆𝑞))dom DProd 𝑠 ↔ (𝐺dom DProd 𝑠 ∧ ran 𝑠 ⊆ 𝒫 (𝑆𝑞))))
9291simprbda 653 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → 𝐺dom DProd 𝑠)
9391simplbda 654 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → ran 𝑠 ⊆ 𝒫 (𝑆𝑞))
9454, 89, 92, 93subgdprd 18434 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → ((𝐺s (𝑆𝑞)) DProd 𝑠) = (𝐺 DProd 𝑠))
9559ad2antrr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (𝑆𝑞) = (Base‘(𝐺s (𝑆𝑞))))
9695eqcomd 2628 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (Base‘(𝐺s (𝑆𝑞))) = (𝑆𝑞))
9794, 96eqeq12d 2637 . . . . . . . . . . . . . . 15 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))) ↔ (𝐺 DProd 𝑠) = (𝑆𝑞)))
9897biimpd 219 . . . . . . . . . . . . . 14 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))) → (𝐺 DProd 𝑠) = (𝑆𝑞)))
9998, 92jctild 566 . . . . . . . . . . . . 13 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
10099expimpd 629 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) → (((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
10187, 100sylan2 491 . . . . . . . . . . 11 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) → (((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
102 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → ((𝐺s (𝑆𝑞)) ↾s 𝑟) = ((𝐺s (𝑆𝑞)) ↾s 𝑦))
103102eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )))
104103cbvrabv 3199 . . . . . . . . . . . . . 14 {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} = {𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )}
10554subsubg 17617 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆𝑞))))
10640, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐴) → (𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆𝑞))))
107106simprbda 653 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞)))) → 𝑦 ∈ (SubGrp‘𝐺))
1081073adant3 1081 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → 𝑦 ∈ (SubGrp‘𝐺))
109403ad2ant1 1082 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
110106simplbda 654 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞)))) → 𝑦 ⊆ (𝑆𝑞))
1111103adant3 1081 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → 𝑦 ⊆ (𝑆𝑞))
112 ressabs 15939 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆𝑞)) → ((𝐺s (𝑆𝑞)) ↾s 𝑦) = (𝐺s 𝑦))
113109, 111, 112syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → ((𝐺s (𝑆𝑞)) ↾s 𝑦) = (𝐺s 𝑦))
114 simp3 1063 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp ))
115113, 114eqeltrrd 2702 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → (𝐺s 𝑦) ∈ (CycGrp ∩ ran pGrp ))
116 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑦 → (𝐺s 𝑟) = (𝐺s 𝑦))
117116eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑦 → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s 𝑦) ∈ (CycGrp ∩ ran pGrp )))
118117, 41elrab2 3366 . . . . . . . . . . . . . . . 16 (𝑦𝐶 ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (𝐺s 𝑦) ∈ (CycGrp ∩ ran pGrp )))
119108, 115, 118sylanbrc 698 . . . . . . . . . . . . . . 15 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → 𝑦𝐶)
120119rabssdv 3682 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → {𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )} ⊆ 𝐶)
121104, 120syl5eqss 3649 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ 𝐶)
122 sswrd 13313 . . . . . . . . . . . . 13 ({𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ 𝐶 → Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word 𝐶)
123121, 122syl 17 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word 𝐶)
124123sselda 3603 . . . . . . . . . . 11 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) → 𝑠 ∈ Word 𝐶)
125101, 124jctild 566 . . . . . . . . . 10 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) → (((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → (𝑠 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))))
126125expimpd 629 . . . . . . . . 9 ((𝜑𝑞𝐴) → ((𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ∧ ((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))))) → (𝑠 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))))
127126reximdv2 3014 . . . . . . . 8 ((𝜑𝑞𝐴) → (∃𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
12883, 127mpd 15 . . . . . . 7 ((𝜑𝑞𝐴) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))
129 rabn0 3958 . . . . . . 7 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))
130128, 129sylibr 224 . . . . . 6 ((𝜑𝑞𝐴) → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))} ≠ ∅)
13150, 130eqnetrd 2861 . . . . 5 ((𝜑𝑞𝐴) → {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} ≠ ∅)
132 rabn0 3958 . . . . 5 ({𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} ≠ ∅ ↔ ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞)))
133131, 132sylib 208 . . . 4 ((𝜑𝑞𝐴) → ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞)))
134133ralrimiva 2966 . . 3 (𝜑 → ∀𝑞𝐴𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞)))
135 eleq1 2689 . . . 4 (𝑦 = (𝑓𝑞) → (𝑦 ∈ (𝑊‘(𝑆𝑞)) ↔ (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))))
136135ac6sfi 8204 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑞𝐴𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))) → ∃𝑓(𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))))
13726, 134, 136syl2anc 693 . 2 (𝜑 → ∃𝑓(𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))))
138 sneq 4187 . . . . . . . . 9 (𝑞 = 𝑦 → {𝑞} = {𝑦})
139 fveq2 6191 . . . . . . . . . 10 (𝑞 = 𝑦 → (𝑓𝑞) = (𝑓𝑦))
140139dmeqd 5326 . . . . . . . . 9 (𝑞 = 𝑦 → dom (𝑓𝑞) = dom (𝑓𝑦))
141138, 140xpeq12d 5140 . . . . . . . 8 (𝑞 = 𝑦 → ({𝑞} × dom (𝑓𝑞)) = ({𝑦} × dom (𝑓𝑦)))
142141cbviunv 4559 . . . . . . 7 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) = 𝑦𝐴 ({𝑦} × dom (𝑓𝑦))
14326adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝐴 ∈ Fin)
144 snfi 8038 . . . . . . . . . 10 {𝑦} ∈ Fin
145 simprl 794 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝑓:𝐴⟶Word 𝐶)
146145ffvelrnda 6359 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ Word 𝐶)
147 wrdf 13310 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ Word 𝐶 → (𝑓𝑦):(0..^(#‘(𝑓𝑦)))⟶𝐶)
148 fdm 6051 . . . . . . . . . . . 12 ((𝑓𝑦):(0..^(#‘(𝑓𝑦)))⟶𝐶 → dom (𝑓𝑦) = (0..^(#‘(𝑓𝑦))))
149146, 147, 1483syl 18 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → dom (𝑓𝑦) = (0..^(#‘(𝑓𝑦))))
150 fzofi 12773 . . . . . . . . . . 11 (0..^(#‘(𝑓𝑦))) ∈ Fin
151149, 150syl6eqel 2709 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → dom (𝑓𝑦) ∈ Fin)
152 xpfi 8231 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ dom (𝑓𝑦) ∈ Fin) → ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
153144, 151, 152sylancr 695 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
154153ralrimiva 2966 . . . . . . . 8 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → ∀𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
155 iunfi 8254 . . . . . . . 8 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin) → 𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
156143, 154, 155syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
157142, 156syl5eqel 2705 . . . . . 6 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ∈ Fin)
158 hashcl 13147 . . . . . 6 ( 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ∈ Fin → (#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ∈ ℕ0)
159 hashfzo0 13217 . . . . . 6 ((#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ∈ ℕ0 → (#‘(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
160157, 158, 1593syl 18 . . . . 5 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (#‘(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
161 fzofi 12773 . . . . . 6 (0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ∈ Fin
162 hashen 13135 . . . . . 6 (((0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ∈ Fin ∧ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ∈ Fin) → ((#‘(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ↔ (0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
163161, 157, 162sylancr 695 . . . . 5 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → ((#‘(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ↔ (0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
164160, 163mpbid 222 . . . 4 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
165 bren 7964 . . . 4 ((0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ↔ ∃ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
166164, 165sylib 208 . . 3 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → ∃ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
1676adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → 𝐺 ∈ Abel)
16811adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → 𝐵 ∈ Fin)
169 breq1 4656 . . . . . . . 8 (𝑤 = 𝑎 → (𝑤 ∥ (#‘𝐵) ↔ 𝑎 ∥ (#‘𝐵)))
170169cbvrabv 3199 . . . . . . 7 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)} = {𝑎 ∈ ℙ ∣ 𝑎 ∥ (#‘𝐵)}
1712, 170eqtri 2644 . . . . . 6 𝐴 = {𝑎 ∈ ℙ ∣ 𝑎 ∥ (#‘𝐵)}
172 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝑂𝑥) = (𝑂𝑐))
173172breq1d 4663 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵))) ↔ (𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))))
174173cbvrabv 3199 . . . . . . . . 9 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} = {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}
175 id 22 . . . . . . . . . . . 12 (𝑝 = 𝑏𝑝 = 𝑏)
176 oveq1 6657 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝 pCnt (#‘𝐵)) = (𝑏 pCnt (#‘𝐵)))
177175, 176oveq12d 6668 . . . . . . . . . . 11 (𝑝 = 𝑏 → (𝑝↑(𝑝 pCnt (#‘𝐵))) = (𝑏↑(𝑏 pCnt (#‘𝐵))))
178177breq2d 4665 . . . . . . . . . 10 (𝑝 = 𝑏 → ((𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵))) ↔ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (#‘𝐵)))))
179178rabbidv 3189 . . . . . . . . 9 (𝑝 = 𝑏 → {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} = {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (#‘𝐵)))})
180174, 179syl5eq 2668 . . . . . . . 8 (𝑝 = 𝑏 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} = {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (#‘𝐵)))})
181180cbvmptv 4750 . . . . . . 7 (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) = (𝑏𝐴 ↦ {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (#‘𝐵)))})
18229, 181eqtri 2644 . . . . . 6 𝑆 = (𝑏𝐴 ↦ {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (#‘𝐵)))})
183 breq2 4657 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑡))
184 oveq2 6658 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑡))
185184eqeq1d 2624 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑡) = 𝑔))
186183, 185anbi12d 747 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)))
187186cbvrabv 3199 . . . . . . . 8 {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)}
188187mpteq2i 4741 . . . . . . 7 (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)})
18942, 188eqtri 2644 . . . . . 6 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)})
190 simprll 802 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → 𝑓:𝐴⟶Word 𝐶)
191 simprlr 803 . . . . . . 7 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))
192 fveq2 6191 . . . . . . . . . 10 (𝑞 = 𝑦 → (𝑆𝑞) = (𝑆𝑦))
193192fveq2d 6195 . . . . . . . . 9 (𝑞 = 𝑦 → (𝑊‘(𝑆𝑞)) = (𝑊‘(𝑆𝑦)))
194139, 193eleq12d 2695 . . . . . . . 8 (𝑞 = 𝑦 → ((𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)) ↔ (𝑓𝑦) ∈ (𝑊‘(𝑆𝑦))))
195194cbvralv 3171 . . . . . . 7 (∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)) ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ (𝑊‘(𝑆𝑦)))
196191, 195sylib 208 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → ∀𝑦𝐴 (𝑓𝑦) ∈ (𝑊‘(𝑆𝑦)))
197 simprr 796 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
1988, 41, 167, 168, 28, 171, 182, 189, 190, 196, 142, 197ablfaclem2 18485 . . . . 5 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → (𝑊𝐵) ≠ ∅)
199198expr 643 . . . 4 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (:(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) → (𝑊𝐵) ≠ ∅))
200199exlimdv 1861 . . 3 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (∃ :(0..^(#‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) → (𝑊𝐵) ≠ ∅))
201166, 200mpd 15 . 2 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (𝑊𝐵) ≠ ∅)
202137, 201exlimddv 1863 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cen 7952  Fincfn 7955  0cc0 9936  1c1 9937  cle 10075  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465  cexp 12860  #chash 13117  Word cword 13291  cdvds 14983  cprime 15385   pCnt cpc 15541  Basecbs 15857  s cress 15858  Grpcgrp 17422  SubGrpcsubg 17588  odcod 17944   pGrp cpgp 17946  Abelcabl 18194  CycGrpccyg 18279   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394
This theorem is referenced by:  ablfac  18487
  Copyright terms: Public domain W3C validator