MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Structured version   Visualization version   Unicode version

Theorem acneq 8866
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq  |-  ( A  =  C  -> AC  A  = AC  C )

Proof of Theorem acneq
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( A  =  C  ->  ( A  e.  _V  <->  C  e.  _V ) )
2 oveq2 6658 . . . . 5  |-  ( A  =  C  ->  (
( ~P x  \  { (/) } )  ^m  A )  =  ( ( ~P x  \  { (/) } )  ^m  C ) )
3 raleq 3138 . . . . . 6  |-  ( A  =  C  ->  ( A. y  e.  A  ( g `  y
)  e.  ( f `
 y )  <->  A. y  e.  C  ( g `  y )  e.  ( f `  y ) ) )
43exbidv 1850 . . . . 5  |-  ( A  =  C  ->  ( E. g A. y  e.  A  ( g `  y )  e.  ( f `  y )  <->  E. g A. y  e.  C  ( g `  y )  e.  ( f `  y ) ) )
52, 4raleqbidv 3152 . . . 4  |-  ( A  =  C  ->  ( A. f  e.  (
( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y )  <->  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) )
61, 5anbi12d 747 . . 3  |-  ( A  =  C  ->  (
( A  e.  _V  /\ 
A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) )  <-> 
( C  e.  _V  /\ 
A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) ) )
76abbidv 2741 . 2  |-  ( A  =  C  ->  { x  |  ( A  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) ) }  =  { x  |  ( C  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) } )
8 df-acn 8768 . 2  |- AC  A  =  { x  |  ( A  e.  _V  /\  A. f  e.  ( ( ~P x  \  { (/)
} )  ^m  A
) E. g A. y  e.  A  (
g `  y )  e.  ( f `  y
) ) }
9 df-acn 8768 . 2  |- AC  C  =  { x  |  ( C  e.  _V  /\  A. f  e.  ( ( ~P x  \  { (/)
} )  ^m  C
) E. g A. y  e.  C  (
g `  y )  e.  ( f `  y
) ) }
107, 8, 93eqtr4g 2681 1  |-  ( A  =  C  -> AC  A  = AC  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   ` cfv 5888  (class class class)co 6650    ^m cmap 7857  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-acn 8768
This theorem is referenced by:  acndom  8874  dfacacn  8963  dfac13  8964
  Copyright terms: Public domain W3C validator