MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 1297
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
ad4ant23.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant23.1 . . . . 5 ((𝜑𝜓) → 𝜒)
21ex 450 . . . 4 (𝜑 → (𝜓𝜒))
32a1dd 50 . . 3 (𝜑 → (𝜓 → (𝜏𝜒)))
43a1i 11 . 2 (𝜃 → (𝜑 → (𝜓 → (𝜏𝜒))))
54imp41 619 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  fntpb  6473  usgredg2vlem2  26118  umgr3v3e3cycl  27044  matunitlindflem1  33405  matunitlindflem2  33406  heicant  33444  difmap  39399  xlimmnfvlem2  40059  xlimpnfvlem2  40063  sge0resplit  40623  hoidmvle  40814
  Copyright terms: Public domain W3C validator