| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version Unicode version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| ad4ant23.1 |
|
| Ref | Expression |
|---|---|
| ad4ant23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant23.1 |
. . . . 5
| |
| 2 | 1 | ex 450 |
. . . 4
|
| 3 | 2 | a1dd 50 |
. . 3
|
| 4 | 3 | a1i 11 |
. 2
|
| 5 | 4 | imp41 619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: fntpb 6473 usgredg2vlem2 26118 umgr3v3e3cycl 27044 matunitlindflem1 33405 matunitlindflem2 33406 heicant 33444 difmap 39399 xlimmnfvlem2 40059 xlimpnfvlem2 40063 sge0resplit 40623 hoidmvle 40814 |
| Copyright terms: Public domain | W3C validator |