MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg2vlem2 Structured version   Visualization version   GIF version

Theorem usgredg2vlem2 26118
Description: Lemma 2 for usgredg2v 26119. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
Assertion
Ref Expression
usgredg2vlem2 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑥,𝑌,𝑧   𝑧,𝐼
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2vlem2
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑥 = 𝑌 → (𝐸𝑥) = (𝐸𝑌))
21eleq2d 2687 . . . . 5 (𝑥 = 𝑌 → (𝑁 ∈ (𝐸𝑥) ↔ 𝑁 ∈ (𝐸𝑌)))
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
42, 3elrab2 3366 . . . 4 (𝑌𝐴 ↔ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
54biimpi 206 . . 3 (𝑌𝐴 → (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
6 usgredg2v.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
7 usgredg2v.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
86, 7usgredgreu 26110 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
983expb 1266 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
106, 7, 3usgredg2vlem1 26117 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1110adantlr 751 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1211ad4ant23 1297 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
13 eleq1 2689 . . . . . . . . . . . . . 14 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1413adantl 482 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1512, 14mpbird 247 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → 𝐼𝑉)
16 prcom 4267 . . . . . . . . . . . . . . . 16 {𝑁, 𝑧} = {𝑧, 𝑁}
1716eqeq2i 2634 . . . . . . . . . . . . . . 15 ((𝐸𝑌) = {𝑁, 𝑧} ↔ (𝐸𝑌) = {𝑧, 𝑁})
1817reubii 3128 . . . . . . . . . . . . . 14 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
1918biimpi 206 . . . . . . . . . . . . 13 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
2019ad3antrrr 766 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
21 preq1 4268 . . . . . . . . . . . . . 14 (𝑧 = 𝐼 → {𝑧, 𝑁} = {𝐼, 𝑁})
2221eqeq2d 2632 . . . . . . . . . . . . 13 (𝑧 = 𝐼 → ((𝐸𝑌) = {𝑧, 𝑁} ↔ (𝐸𝑌) = {𝐼, 𝑁}))
2322riota2 6633 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2415, 20, 23syl2anc 693 . . . . . . . . . . 11 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2524exbiri 652 . . . . . . . . . 10 (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐸𝑌) = {𝐼, 𝑁})))
2625com13 88 . . . . . . . . 9 ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2726eqcoms 2630 . . . . . . . 8 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2827pm2.43i 52 . . . . . . 7 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁}))
2928expdcom 455 . . . . . 6 ((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
309, 29mpancom 703 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3130expcom 451 . . . 4 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝐺 ∈ USGraph → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
3231com23 86 . . 3 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
335, 32mpcom 38 . 2 (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3433impcom 446 1 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ∃!wreu 2914  {crab 2916  {cpr 4179  dom cdm 5114  cfv 5888  crio 6610  Vtxcvtx 25874  iEdgciedg 25875   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-umgr 25978  df-usgr 26046
This theorem is referenced by:  usgredg2v  26119
  Copyright terms: Public domain W3C validator