MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqnq Structured version   Visualization version   GIF version

Theorem addpqnq 9760
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addpqnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))

Proof of Theorem addpqnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plq 9736 . . . . 5 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
21fveq1i 6192 . . . 4 ( +Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩)
32a1i 11 . . 3 ((𝐴Q𝐵Q) → ( +Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩))
4 opelxpi 5148 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ (Q × Q))
5 fvres 6207 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (Q × Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩))
64, 5syl 17 . . 3 ((𝐴Q𝐵Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩))
7 df-plpq 9730 . . . . 5 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
8 opex 4932 . . . . 5 ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ V
97, 8fnmpt2i 7239 . . . 4 +pQ Fn ((N × N) × (N × N))
10 elpqn 9747 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
11 elpqn 9747 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
12 opelxpi 5148 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
1310, 11, 12syl2an 494 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
14 fvco2 6273 . . . 4 (( +pQ Fn ((N × N) × (N × N)) ∧ ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
159, 13, 14sylancr 695 . . 3 ((𝐴Q𝐵Q) → (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
163, 6, 153eqtrd 2660 . 2 ((𝐴Q𝐵Q) → ( +Q ‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
17 df-ov 6653 . 2 (𝐴 +Q 𝐵) = ( +Q ‘⟨𝐴, 𝐵⟩)
18 df-ov 6653 . . 3 (𝐴 +pQ 𝐵) = ( +pQ ‘⟨𝐴, 𝐵⟩)
1918fveq2i 6194 . 2 ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩))
2016, 17, 193eqtr4g 2681 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cop 4183   × cxp 5112  cres 5116  ccom 5118   Fn wfn 5883  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Ncnpi 9666   +N cpli 9667   ·N cmi 9668   +pQ cplpq 9670  Qcnq 9674  [Q]cerq 9676   +Q cplq 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-plpq 9730  df-nq 9734  df-plq 9736
This theorem is referenced by:  addclnq  9767  addcomnq  9773  adderpq  9778  addassnq  9780  distrnq  9783  ltanq  9793  1lt2nq  9795  prlem934  9855
  Copyright terms: Public domain W3C validator