MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqnq Structured version   Visualization version   Unicode version

Theorem addpqnq 9760
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addpqnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )

Proof of Theorem addpqnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plq 9736 . . . . 5  |-  +Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) )
21fveq1i 6192 . . . 4  |-  (  +Q 
`  <. A ,  B >. )  =  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
32a1i 11 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  +Q  `  <. A ,  B >. )  =  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
)
4 opelxpi 5148 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( Q.  X.  Q. ) )
5 fvres 6207 . . . 4  |-  ( <. A ,  B >.  e.  ( Q.  X.  Q. )  ->  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )  =  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. ) )
64, 5syl 17 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `
 <. A ,  B >. )  =  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. ) )
7 df-plpq 9730 . . . . 5  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
8 opex 4932 . . . . 5  |-  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  e.  _V
97, 8fnmpt2i 7239 . . . 4  |-  +pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )
10 elpqn 9747 . . . . 5  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
11 elpqn 9747 . . . . 5  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
12 opelxpi 5148 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
1310, 11, 12syl2an 494 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
14 fvco2 6273 . . . 4  |-  ( ( 
+pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  /\  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  +pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) ) )
159, 13, 14sylancr 695 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) ) )
163, 6, 153eqtrd 2660 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  +Q  `  <. A ,  B >. )  =  ( /Q `  (  +pQ  `  <. A ,  B >. ) ) )
17 df-ov 6653 . 2  |-  ( A  +Q  B )  =  (  +Q  `  <. A ,  B >. )
18 df-ov 6653 . . 3  |-  ( A 
+pQ  B )  =  (  +pQ  `  <. A ,  B >. )
1918fveq2i 6194 . 2  |-  ( /Q
`  ( A  +pQ  B ) )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) )
2016, 17, 193eqtr4g 2681 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112    |` cres 5116    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    +N cpli 9667    .N cmi 9668    +pQ cplpq 9670   Q.cnq 9674   /Qcerq 9676    +Q cplq 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-plpq 9730  df-nq 9734  df-plq 9736
This theorem is referenced by:  addclnq  9767  addcomnq  9773  adderpq  9778  addassnq  9780  distrnq  9783  ltanq  9793  1lt2nq  9795  prlem934  9855
  Copyright terms: Public domain W3C validator