Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrval Structured version   Visualization version   GIF version

Theorem addrval 38670
Description: Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
addrval ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵
Allowed substitution hints:   𝐶(𝑣)   𝐷(𝑣)

Proof of Theorem addrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3212 . 2 (𝐵𝐷𝐵 ∈ V)
3 fveq1 6190 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑣) = (𝐴𝑣))
4 fveq1 6190 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑣) = (𝐵𝑣))
53, 4oveqan12d 6669 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑣) + (𝑦𝑣)) = ((𝐴𝑣) + (𝐵𝑣)))
65mpteq2dv 4745 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
7 df-addr 38667 . . 3 +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))))
8 reex 10027 . . . 4 ℝ ∈ V
98mptex 6486 . . 3 (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))) ∈ V
106, 7, 9ovmpt2a 6791 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
111, 2, 10syl2an 494 1 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cmpt 4729  cfv 5888  (class class class)co 6650  cr 9935   + caddc 9939  +𝑟cplusr 38661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-addr 38667
This theorem is referenced by:  addrfv  38673  addrfn  38676
  Copyright terms: Public domain W3C validator