![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5422 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 5907 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3574 ↾ cres 5116 Fun wfun 5882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-res 5126 df-fun 5890 |
This theorem is referenced by: fnssresb 6003 fnresi 6008 fores 6124 respreima 6344 resfunexg 6479 funfvima 6492 funiunfv 6506 wfrlem5 7419 smores 7449 smores2 7451 frfnom 7530 sbthlem7 8076 fsuppres 8300 ordtypelem4 8426 wdomima2g 8491 imadomg 9356 hashres 13225 hashimarn 13227 setsfun 15893 setsfun0 15894 lubfun 16980 glbfun 16993 gsumzadd 18322 gsum2dlem2 18370 qtoptop2 21502 volf 23297 uhgrspansubgrlem 26182 upgrres 26198 umgrres 26199 trlsegvdeglem2 27081 sspg 27583 ssps 27585 sspn 27591 hlimf 28094 fresf1o 29433 eulerpartlemmf 30437 eulerpartlemgvv 30438 frrlem5 31784 nolesgn2ores 31825 nosupres 31853 nosupbnd2lem1 31861 noetalem3 31865 funresd 39476 funcoressn 41207 afvelrn 41248 dmfcoafv 41255 afvco2 41256 aovmpt4g 41281 |
Copyright terms: Public domain | W3C validator |