MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajfval Structured version   Visualization version   GIF version

Theorem ajfval 27664
Description: The adjoint function. (Contributed by NM, 25-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajfval.1 𝑋 = (BaseSet‘𝑈)
ajfval.2 𝑌 = (BaseSet‘𝑊)
ajfval.3 𝑃 = (·𝑖OLD𝑈)
ajfval.4 𝑄 = (·𝑖OLD𝑊)
ajfval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajfval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑈   𝑊,𝑠,𝑡,𝑥,𝑦   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑡,𝑠)   𝑃(𝑥,𝑦,𝑡,𝑠)   𝑄(𝑥,𝑦,𝑡,𝑠)   𝑋(𝑦)   𝑌(𝑥)

Proof of Theorem ajfval
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ajfval.5 . 2 𝐴 = (𝑈adj𝑊)
2 fveq2 6191 . . . . . . 7 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 ajfval.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
42, 3syl6eqr 2674 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54feq2d 6031 . . . . 5 (𝑢 = 𝑈 → (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ↔ 𝑡:𝑋⟶(BaseSet‘𝑤)))
64feq3d 6032 . . . . 5 (𝑢 = 𝑈 → (𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ↔ 𝑠:(BaseSet‘𝑤)⟶𝑋))
7 fveq2 6191 . . . . . . . . . 10 (𝑢 = 𝑈 → (·𝑖OLD𝑢) = (·𝑖OLD𝑈))
8 ajfval.3 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
97, 8syl6eqr 2674 . . . . . . . . 9 (𝑢 = 𝑈 → (·𝑖OLD𝑢) = 𝑃)
109oveqd 6667 . . . . . . . 8 (𝑢 = 𝑈 → (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) = (𝑥𝑃(𝑠𝑦)))
1110eqeq2d 2632 . . . . . . 7 (𝑢 = 𝑈 → (((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) ↔ ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))))
1211ralbidv 2986 . . . . . 6 (𝑢 = 𝑈 → (∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) ↔ ∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))))
134, 12raleqbidv 3152 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))))
145, 6, 133anbi123d 1399 . . . 4 (𝑢 = 𝑈 → ((𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)))))
1514opabbidv 4716 . . 3 (𝑢 = 𝑈 → {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)))})
16 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
17 ajfval.2 . . . . . . 7 𝑌 = (BaseSet‘𝑊)
1816, 17syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
1918feq3d 6032 . . . . 5 (𝑤 = 𝑊 → (𝑡:𝑋⟶(BaseSet‘𝑤) ↔ 𝑡:𝑋𝑌))
2018feq2d 6031 . . . . 5 (𝑤 = 𝑊 → (𝑠:(BaseSet‘𝑤)⟶𝑋𝑠:𝑌𝑋))
21 fveq2 6191 . . . . . . . . . 10 (𝑤 = 𝑊 → (·𝑖OLD𝑤) = (·𝑖OLD𝑊))
22 ajfval.4 . . . . . . . . . 10 𝑄 = (·𝑖OLD𝑊)
2321, 22syl6eqr 2674 . . . . . . . . 9 (𝑤 = 𝑊 → (·𝑖OLD𝑤) = 𝑄)
2423oveqd 6667 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = ((𝑡𝑥)𝑄𝑦))
2524eqeq1d 2624 . . . . . . 7 (𝑤 = 𝑊 → (((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2618, 25raleqbidv 3152 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2726ralbidv 2986 . . . . 5 (𝑤 = 𝑊 → (∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2819, 20, 273anbi123d 1399 . . . 4 (𝑤 = 𝑊 → ((𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2928opabbidv 4716 . . 3 (𝑤 = 𝑊 → {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶𝑋 ∧ ∀𝑥𝑋𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
30 df-aj 27605 . . 3 adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
31 ovex 6678 . . . . 5 (𝑌𝑚 𝑋) ∈ V
32 ovex 6678 . . . . 5 (𝑋𝑚 𝑌) ∈ V
3331, 32xpex 6962 . . . 4 ((𝑌𝑚 𝑋) × (𝑋𝑚 𝑌)) ∈ V
34 fvex 6201 . . . . . . . . . . 11 (BaseSet‘𝑊) ∈ V
3517, 34eqeltri 2697 . . . . . . . . . 10 𝑌 ∈ V
36 fvex 6201 . . . . . . . . . . 11 (BaseSet‘𝑈) ∈ V
373, 36eqeltri 2697 . . . . . . . . . 10 𝑋 ∈ V
3835, 37elmap 7886 . . . . . . . . 9 (𝑡 ∈ (𝑌𝑚 𝑋) ↔ 𝑡:𝑋𝑌)
3937, 35elmap 7886 . . . . . . . . 9 (𝑠 ∈ (𝑋𝑚 𝑌) ↔ 𝑠:𝑌𝑋)
4038, 39anbi12i 733 . . . . . . . 8 ((𝑡 ∈ (𝑌𝑚 𝑋) ∧ 𝑠 ∈ (𝑋𝑚 𝑌)) ↔ (𝑡:𝑋𝑌𝑠:𝑌𝑋))
4140biimpri 218 . . . . . . 7 ((𝑡:𝑋𝑌𝑠:𝑌𝑋) → (𝑡 ∈ (𝑌𝑚 𝑋) ∧ 𝑠 ∈ (𝑋𝑚 𝑌)))
42413adant3 1081 . . . . . 6 ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) → (𝑡 ∈ (𝑌𝑚 𝑋) ∧ 𝑠 ∈ (𝑋𝑚 𝑌)))
4342ssopab2i 5003 . . . . 5 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} ⊆ {⟨𝑡, 𝑠⟩ ∣ (𝑡 ∈ (𝑌𝑚 𝑋) ∧ 𝑠 ∈ (𝑋𝑚 𝑌))}
44 df-xp 5120 . . . . 5 ((𝑌𝑚 𝑋) × (𝑋𝑚 𝑌)) = {⟨𝑡, 𝑠⟩ ∣ (𝑡 ∈ (𝑌𝑚 𝑋) ∧ 𝑠 ∈ (𝑋𝑚 𝑌))}
4543, 44sseqtr4i 3638 . . . 4 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} ⊆ ((𝑌𝑚 𝑋) × (𝑋𝑚 𝑌))
4633, 45ssexi 4803 . . 3 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} ∈ V
4715, 29, 30, 46ovmpt2 6796 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈adj𝑊) = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
481, 47syl5eq 2668 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  {copab 4712   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  NrmCVeccnv 27439  BaseSetcba 27441  ·𝑖OLDcdip 27555  adjcaj 27603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-aj 27605
This theorem is referenced by:  ajfuni  27715  ajval  27717
  Copyright terms: Public domain W3C validator