![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > angvald | Structured version Visualization version GIF version |
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 24531. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
angvald.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
angvald.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
angvald.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
angvald.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
Ref | Expression |
---|---|
angvald | ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angvald.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | angvald.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
3 | angvald.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
4 | angvald.4 | . 2 ⊢ (𝜑 → 𝑌 ≠ 0) | |
5 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
6 | 5 | angval 24531 | . 2 ⊢ (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
7 | 1, 2, 3, 4, 6 | syl22anc 1327 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 {csn 4177 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℂcc 9934 0cc0 9936 / cdiv 10684 ℑcim 13838 logclog 24301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
This theorem is referenced by: angcld 24535 angrteqvd 24536 cosangneg2d 24537 ang180lem4 24542 lawcos 24546 isosctrlem3 24550 angpieqvdlem2 24556 |
Copyright terms: Public domain | W3C validator |