MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angvald Structured version   Visualization version   Unicode version

Theorem angvald 24534
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 24531. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
angvald.1  |-  ( ph  ->  X  e.  CC )
angvald.2  |-  ( ph  ->  X  =/=  0 )
angvald.3  |-  ( ph  ->  Y  e.  CC )
angvald.4  |-  ( ph  ->  Y  =/=  0 )
Assertion
Ref Expression
angvald  |-  ( ph  ->  ( X F Y )  =  ( Im
`  ( log `  ( Y  /  X ) ) ) )
Distinct variable groups:    x, y, X    x, Y, y
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem angvald
StepHypRef Expression
1 angvald.1 . 2  |-  ( ph  ->  X  e.  CC )
2 angvald.2 . 2  |-  ( ph  ->  X  =/=  0 )
3 angvald.3 . 2  |-  ( ph  ->  Y  e.  CC )
4 angvald.4 . 2  |-  ( ph  ->  Y  =/=  0 )
5 ang.1 . . 3  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
65angval 24531 . 2  |-  ( ( ( X  e.  CC  /\  X  =/=  0 )  /\  ( Y  e.  CC  /\  Y  =/=  0 ) )  -> 
( X F Y )  =  ( Im
`  ( log `  ( Y  /  X ) ) ) )
71, 2, 3, 4, 6syl22anc 1327 1  |-  ( ph  ->  ( X F Y )  =  ( Im
`  ( log `  ( Y  /  X ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   0cc0 9936    / cdiv 10684   Imcim 13838   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  angcld  24535  angrteqvd  24536  cosangneg2d  24537  ang180lem4  24542  lawcos  24546  isosctrlem3  24550  angpieqvdlem2  24556
  Copyright terms: Public domain W3C validator