MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   GIF version

Theorem arwval 16693
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a 𝐴 = (Arrow‘𝐶)
arwval.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwval 𝐴 = ran 𝐻

Proof of Theorem arwval
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2 𝐴 = (Arrow‘𝐶)
2 fveq2 6191 . . . . . . 7 (𝑐 = 𝐶 → (Homa𝑐) = (Homa𝐶))
3 arwval.h . . . . . . 7 𝐻 = (Homa𝐶)
42, 3syl6eqr 2674 . . . . . 6 (𝑐 = 𝐶 → (Homa𝑐) = 𝐻)
54rneqd 5353 . . . . 5 (𝑐 = 𝐶 → ran (Homa𝑐) = ran 𝐻)
65unieqd 4446 . . . 4 (𝑐 = 𝐶 ran (Homa𝑐) = ran 𝐻)
7 df-arw 16677 . . . 4 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
8 fvex 6201 . . . . . . 7 (Homa𝐶) ∈ V
93, 8eqeltri 2697 . . . . . 6 𝐻 ∈ V
109rnex 7100 . . . . 5 ran 𝐻 ∈ V
1110uniex 6953 . . . 4 ran 𝐻 ∈ V
126, 7, 11fvmpt 6282 . . 3 (𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
137dmmptss 5631 . . . . . . 7 dom Arrow ⊆ Cat
1413sseli 3599 . . . . . 6 (𝐶 ∈ dom Arrow → 𝐶 ∈ Cat)
1514con3i 150 . . . . 5 𝐶 ∈ Cat → ¬ 𝐶 ∈ dom Arrow)
16 ndmfv 6218 . . . . 5 𝐶 ∈ dom Arrow → (Arrow‘𝐶) = ∅)
1715, 16syl 17 . . . 4 𝐶 ∈ Cat → (Arrow‘𝐶) = ∅)
18 df-homa 16676 . . . . . . . . . . . . 13 Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
1918dmmptss 5631 . . . . . . . . . . . 12 dom Homa ⊆ Cat
2019sseli 3599 . . . . . . . . . . 11 (𝐶 ∈ dom Homa𝐶 ∈ Cat)
2120con3i 150 . . . . . . . . . 10 𝐶 ∈ Cat → ¬ 𝐶 ∈ dom Homa)
22 ndmfv 6218 . . . . . . . . . 10 𝐶 ∈ dom Homa → (Homa𝐶) = ∅)
2321, 22syl 17 . . . . . . . . 9 𝐶 ∈ Cat → (Homa𝐶) = ∅)
243, 23syl5eq 2668 . . . . . . . 8 𝐶 ∈ Cat → 𝐻 = ∅)
2524rneqd 5353 . . . . . . 7 𝐶 ∈ Cat → ran 𝐻 = ran ∅)
26 rn0 5377 . . . . . . 7 ran ∅ = ∅
2725, 26syl6eq 2672 . . . . . 6 𝐶 ∈ Cat → ran 𝐻 = ∅)
2827unieqd 4446 . . . . 5 𝐶 ∈ Cat → ran 𝐻 = ∅)
29 uni0 4465 . . . . 5 ∅ = ∅
3028, 29syl6eq 2672 . . . 4 𝐶 ∈ Cat → ran 𝐻 = ∅)
3117, 30eqtr4d 2659 . . 3 𝐶 ∈ Cat → (Arrow‘𝐶) = ran 𝐻)
3212, 31pm2.61i 176 . 2 (Arrow‘𝐶) = ran 𝐻
331, 32eqtri 2644 1 𝐴 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177   cuni 4436  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cfv 5888  Basecbs 15857  Hom chom 15952  Catccat 16325  Arrowcarw 16672  Homachoma 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-homa 16676  df-arw 16677
This theorem is referenced by:  arwhoma  16695  homarw  16696
  Copyright terms: Public domain W3C validator