MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwval Structured version   Visualization version   Unicode version

Theorem arwval 16693
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwval.a  |-  A  =  (Nat `  C )
arwval.h  |-  H  =  (Homa
`  C )
Assertion
Ref Expression
arwval  |-  A  = 
U. ran  H

Proof of Theorem arwval
Dummy variables  x  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwval.a . 2  |-  A  =  (Nat `  C )
2 fveq2 6191 . . . . . . 7  |-  ( c  =  C  ->  (Homa `  c
)  =  (Homa `  C
) )
3 arwval.h . . . . . . 7  |-  H  =  (Homa
`  C )
42, 3syl6eqr 2674 . . . . . 6  |-  ( c  =  C  ->  (Homa `  c
)  =  H )
54rneqd 5353 . . . . 5  |-  ( c  =  C  ->  ran  (Homa `  c )  =  ran  H )
65unieqd 4446 . . . 4  |-  ( c  =  C  ->  U. ran  (Homa `  c )  =  U. ran  H )
7 df-arw 16677 . . . 4  |- Nat  =  ( c  e.  Cat  |->  U.
ran  (Homa
`  c ) )
8 fvex 6201 . . . . . . 7  |-  (Homa `  C
)  e.  _V
93, 8eqeltri 2697 . . . . . 6  |-  H  e. 
_V
109rnex 7100 . . . . 5  |-  ran  H  e.  _V
1110uniex 6953 . . . 4  |-  U. ran  H  e.  _V
126, 7, 11fvmpt 6282 . . 3  |-  ( C  e.  Cat  ->  (Nat `  C )  =  U. ran  H )
137dmmptss 5631 . . . . . . 7  |-  dom Nat  C_  Cat
1413sseli 3599 . . . . . 6  |-  ( C  e.  dom Nat  ->  C  e. 
Cat )
1514con3i 150 . . . . 5  |-  ( -.  C  e.  Cat  ->  -.  C  e.  dom Nat )
16 ndmfv 6218 . . . . 5  |-  ( -.  C  e.  dom Nat  ->  (Nat
`  C )  =  (/) )
1715, 16syl 17 . . . 4  |-  ( -.  C  e.  Cat  ->  (Nat
`  C )  =  (/) )
18 df-homa 16676 . . . . . . . . . . . . 13  |- Homa  =  ( c  e.  Cat  |->  ( x  e.  ( ( Base `  c
)  X.  ( Base `  c ) )  |->  ( { x }  X.  ( ( Hom  `  c
) `  x )
) ) )
1918dmmptss 5631 . . . . . . . . . . . 12  |-  dom Homa  C_  Cat
2019sseli 3599 . . . . . . . . . . 11  |-  ( C  e.  dom Homa  ->  C  e.  Cat )
2120con3i 150 . . . . . . . . . 10  |-  ( -.  C  e.  Cat  ->  -.  C  e.  dom Homa )
22 ndmfv 6218 . . . . . . . . . 10  |-  ( -.  C  e.  dom Homa  ->  (Homa
`  C )  =  (/) )
2321, 22syl 17 . . . . . . . . 9  |-  ( -.  C  e.  Cat  ->  (Homa `  C )  =  (/) )
243, 23syl5eq 2668 . . . . . . . 8  |-  ( -.  C  e.  Cat  ->  H  =  (/) )
2524rneqd 5353 . . . . . . 7  |-  ( -.  C  e.  Cat  ->  ran 
H  =  ran  (/) )
26 rn0 5377 . . . . . . 7  |-  ran  (/)  =  (/)
2725, 26syl6eq 2672 . . . . . 6  |-  ( -.  C  e.  Cat  ->  ran 
H  =  (/) )
2827unieqd 4446 . . . . 5  |-  ( -.  C  e.  Cat  ->  U.
ran  H  =  U. (/) )
29 uni0 4465 . . . . 5  |-  U. (/)  =  (/)
3028, 29syl6eq 2672 . . . 4  |-  ( -.  C  e.  Cat  ->  U.
ran  H  =  (/) )
3117, 30eqtr4d 2659 . . 3  |-  ( -.  C  e.  Cat  ->  (Nat
`  C )  = 
U. ran  H )
3212, 31pm2.61i 176 . 2  |-  (Nat `  C )  =  U. ran  H
331, 32eqtri 2644 1  |-  A  = 
U. ran  H
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888   Basecbs 15857   Hom chom 15952   Catccat 16325  Natcarw 16672  Homachoma 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-homa 16676  df-arw 16677
This theorem is referenced by:  arwhoma  16695  homarw  16696
  Copyright terms: Public domain W3C validator