MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhoma Structured version   Visualization version   GIF version

Theorem arwhoma 16695
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwhoma (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))

Proof of Theorem arwhoma
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwrcl.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
2 arwhoma.h . . . . . . 7 𝐻 = (Homa𝐶)
31, 2arwval 16693 . . . . . 6 𝐴 = ran 𝐻
43eleq2i 2693 . . . . 5 (𝐹𝐴𝐹 ran 𝐻)
54biimpi 206 . . . 4 (𝐹𝐴𝐹 ran 𝐻)
6 eqid 2622 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
71arwrcl 16694 . . . . . 6 (𝐹𝐴𝐶 ∈ Cat)
82, 6, 7homaf 16680 . . . . 5 (𝐹𝐴𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
9 ffn 6045 . . . . 5 (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fnunirn 6511 . . . . 5 (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
118, 9, 103syl 18 . . . 4 (𝐹𝐴 → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
125, 11mpbid 222 . . 3 (𝐹𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧))
13 fveq2 6191 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
14 df-ov 6653 . . . . . 6 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
1513, 14syl6eqr 2674 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
1615eleq2d 2687 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (𝐻𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦)))
1716rexxp 5264 . . 3 (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
1812, 17sylib 208 . 2 (𝐹𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
19 id 22 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦))
202homadm 16690 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (doma𝐹) = 𝑥)
212homacd 16691 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (coda𝐹) = 𝑦)
2220, 21oveq12d 6668 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → ((doma𝐹)𝐻(coda𝐹)) = (𝑥𝐻𝑦))
2319, 22eleqtrrd 2704 . . . 4 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2423rexlimivw 3029 . . 3 (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2524rexlimivw 3029 . 2 (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2618, 25syl 17 1 (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  𝒫 cpw 4158  cop 4183   cuni 4436   × cxp 5112  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  domacdoma 16670  codaccoda 16671  Arrowcarw 16672  Homachoma 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-doma 16674  df-coda 16675  df-homa 16676  df-arw 16677
This theorem is referenced by:  arwdm  16697  arwcd  16698  arwhom  16701  arwdmcd  16702  coapm  16721
  Copyright terms: Public domain W3C validator