![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvrneN | Structured version Visualization version GIF version |
Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atcvrne.j | ⊢ ∨ = (join‘𝐾) |
atcvrne.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atcvrne.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvrneN | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 34647 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | 3ad2ant1 1082 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝐾 ∈ AtLat) |
3 | simp21 1094 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑃 ∈ 𝐴) | |
4 | eqid 2622 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
5 | atcvrne.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atn0 34595 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
7 | 2, 3, 6 | syl2anc 693 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑃 ≠ (0.‘𝐾)) |
8 | simp1 1061 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝐾 ∈ HL) | |
9 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 5 | atbase 34576 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
11 | 3, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑃 ∈ (Base‘𝐾)) |
12 | simp22 1095 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) | |
13 | simp23 1096 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) | |
14 | simp3 1063 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑃𝐶(𝑄 ∨ 𝑅)) | |
15 | atcvrne.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
16 | atcvrne.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
17 | 9, 15, 4, 16, 5 | atcvrj0 34714 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅)) |
18 | 8, 11, 12, 13, 14, 17 | syl131anc 1339 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅)) |
19 | 18 | necon3bid 2838 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → (𝑃 ≠ (0.‘𝐾) ↔ 𝑄 ≠ 𝑅)) |
20 | 7, 19 | mpbid 222 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 joincjn 16944 0.cp0 17037 ⋖ ccvr 34549 Atomscatm 34550 AtLatcal 34551 HLchlt 34637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 |
This theorem is referenced by: atleneN 34720 |
Copyright terms: Public domain | W3C validator |